These cases are rare, but what happens is something called an occluded front. There are so many things that could be talked about and results aren't typically constant, so I recommend you look up what an occluded front is. Its basically when a cold front catches up to a warm front and forces even more warm air up, causing high amounts of precipitation.
Answer:
C
Explanation:
The electric field inside a conductor is always zero if the charges inside the conductor are not moving.
Since the electron are not moving then they must be in electrostatic equilibrium which means the electric field inside the conductor is zero. if the electric field existed inside the conductor then there will be net force on all the electrons and the electrons will accelerate.
1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
150156.25 Ω
Explanation:
Resistance: This can be defined as the opposition to the flow of electric current in a circuit. The S.I unit of resistance is Ohm's (Ω)
The expression for resistance is given as
P = V²/R................ equation 1
Where P = power, V = Voltage, R = Resistance.
Making R the subject of the equation,
R = V²/P.................. Equation 2
Given: V = 115 V , P = 0.16 W.
Substitute into equation 2
R = 155²/0.16
R = 150156.25 Ω
Hence,
The resistance = 150156.25 Ω
Answer:
Explanation:
Question is incomplete
Assuming the question you have asked is
You are driving home from school steadily at 95 km/h for 180 km. It then begins to rain and you slow to 65 km/h. You arrive home after driving 4.5 h.
given,
speed of 95 km/h for 180 km
due to rain
speed is reduced to 65 km/h
distance traveled in 4.5 hour
time taken to travel 180 km
d = s x t

t = 1.9 hr
distance traveled in time, t' = 4.5-1.9 = 2.6 hr
Speed of vehicle = 65 Km/h
d' = s x t'
d' = 65 x 2.6
d'= 169 Km
total distance your hometown from school
D = d + d'
D = 180 + 169
D = 349 Km