While plane is moving under tailwind condition it took time "t"
so here we will have

here net speed of the plane will be given as


similarly when it moves under the condition of headwind its net speed is given as

now time taken to cover the distance is 2 hours more

now solving two equations

solving above for v_w we got

Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that orbital velocity at certain height from the surface of Earth is given as

here we know that



now we have


Part b)
When a loose rivet is moving in same orbit but at 90 degree with the previous orbit path then in that case the relative speed of the rivet with respect to the satellite is given as

A. Impulse is simply the product of Force and time.
Therefore,
I = F * t --->
1
where I is impulse, F is force, t is time
However another formula for solving impulse is:
I = m vf – m vi --->
2
where m is mass, vf is final velocity and vi is initial
velocity
Therefore using equation 2 to solve for impulse I:
I = 2000kg (0) – 2000kg (77 m/s)
I = -154,000 kg m/s
B. By conservation of momentum, we also know that Impulse
is conserved. That means that increasing the time by a factor of 3 would still
result in an impuse of -154,000 kg m/s. So,
I = F’ * (3 t) = -154,000 kg m/s
Since t is multiplied by 3, therefore this only means
that Force is decreased by a factor of 3 to keep the impulse constant,
therefore:
(F/3) (3t) = -154,000 kg m/s
Summary of Answers:
A. I = -154,000 kg m/s
B. Force is decreased by factor of 3
for a given type of wave in a given medium a larger frequency means a smaller wavelength
Answer:
Please find the answer in the explanation
Explanation:
Given that a light bulb will glow when electrons flow through it. As the electron flow increases, the brightness increases as well. A student hooks up two circuits containing three light bulbs in each circuit. In one circuit the lights are connected in series and in the other circuit the lights are hooked up in parallel.
If you could only see the lights in the circuit and the wires were covered up, how could you tell the type of circuit?
The type of the circuit can be determined if you loose or unscrew one light bulb, all other bulbs will be switched of if connected in series. But if the others remain on it is a parallel circuit.