The time it takes light from a flash camera to reach a subject 6.0 meters across a room in scientific notation is 2.0 *10^-8 s.
<u>Explanation:</u>
<u>Given</u>
t=?
d=6m
v=3*10^8 m/s
we have, v=d/t
here t=d/v
t=6m/3*10^8 m/s
v=2*10^-8 m/s
The time it takes light from a flash camera to reach a subject 6.0 meters across a room in scientific notation is 2.0 *10^-8 s.
<u></u>
Answer:
c
Explanation:
force is how hard it is pulled or pushed
Answer:
install socrati it give you all answers
Explanation:
The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
At stp (standard temperature and pressure), the temperature is T=0 C=273 K and the pressure is p=1.00 atm. So we can use the ideal gas law to find the number of moles of helium:

where p is the pressure (1.00 atm), V the volume (20.0 L), n the number of moles, T the temperature (273 K) and

the gas constant. Using the numbers and re-arranging the formula, we can calculate n: