1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
3 years ago
15

A spherical, non-conducting shell of inner radius = 10 cm and outer radius = 15 cm carries a total charge Q = 13 μC distributed

uniformly throughout the volume of the shell. What is the magnitude of the electric field at a distance r = 11.2 cm from the center of the shell? (ε0 = 8.85 × 10-12 C2/N ∙ m2) (Give your answer to the nearest 0.01 MN/C)
Physics
1 answer:
Vaselesa [24]3 years ago
7 0

Answer:

E = 1580594.95 N/C

Explanation:

To find the electric field inside the the non-conducting shell for r=11.2cm you use the Gauss' law:

\int EdS=\frac{Q_{in}}{\epsilon_o}   (1)

dS: differential of the Gaussian surface

Qin: charge inside the Gaussian surface

εo: dielectric permittivity of vacuum =  8.85 × 10-12 C2/N ∙ m2

The electric field is parallel to the dS vector. In this case you have the surface of a sphere, thus you have:

\int EdS=ES=E(4\pi r^2)   (2)

Qin is calculate by using the charge density:

Q_{in}=V_{in}\rho=\frac{4}{3}(r^3-a^3)\rho  (3)

Vin is the volume of the spherical shell enclosed by the surface. a is the inner radius.

The charge density is given by:

\rho=\frac{Q}{V}=\frac{13*10^{-6}C}{\frac{4}{3}\pi((0.15m)^3-(0.10m)^3)}\\\\\rho=1.30*10^{-3}\frac{C}{m^3}

Next, you use the results of (3), (2) and (1):

E(4\pi r^2)=\frac{4}{3\epsilon_o}(r^3-a^3)\rho\\\\E=\frac{\rho}{3\epsilo_o}(r-\frac{a^3}{r^2})

Finally, you replace the values of all parameters, and for r = 11.2cm = 0.112m you obtain:

E=\frac{1.30*10^{-3}C/m^3}{3(8.85*10^{-12}C^2/Nm^2)}((0.112m)-\frac{(0.10)^3}{(0.112m)^2})\\\\E=1,580,594.95\frac{N}{C}

hence, the electric field is 1580594.95 N/C

You might be interested in
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal. The cart accelerates at 1.4 m/s2. The free-body di
Vikki [24]

Answer:

Mass of the cart = 146 kg

Explanation:

A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.

The cart accelerates at 1.4 m/s² horizontally.

Horizontal force = Fcosθ = 250 cos35° = 204.79N

We have F = ma

Substituting

        204.79 = m x 1.4  

              m = 146.28 kg = 146 kg

Mass of the cart = 146 kg

3 0
3 years ago
What is the acceleration of a proton moving with a speed of 6.5 m/s at right angles to a magnetic field of 1.5 T?
Brilliant_brown [7]

Answer:

The acceleration of the proton is 9.353 x 10⁸ m/s²

Explanation:

Given;

speed of the proton, u =  6.5 m/s

magnetic field strength, B = 1.5 T

The force of the proton is given by;

F = ma = qvB(sin90°)

ma = qvB

where;

m is mass of the proton, = 1.67 x 10⁻²⁷ kg

charge of the proton, q = 1.602 x 10⁻¹⁹ C

The acceleration of the proton is given by;

a = \frac{qvB}{m}\\\\a = \frac{(1.602*10^{-19})(6.5)(1.5)}{1.67*10^{-27}}\\\\a = 9.353*10^8 \ m/s^2

Therefore, the acceleration of the proton is 9.353 x 10⁸ m/s²

4 0
3 years ago
A human hair is approximately 50 pm in diameter. Express this diameter in meters.
cupoosta [38]

A human hair is approximately 50 μm = 5 × 10⁻⁵ m  in diameter

4 0
3 years ago
What is the benefit of developing the atomic mass unit as a standard unit of mass?
Alexeev081 [22]

Answer:

The atomic mass unit is 1/12 of an atom of carbon 12, and is a very small amount to represent in kilograms:

1m_{u}=1.66054x10^{-27}kg

m_{u} is atomic mass unit.

This is why the benefits of the atomic mass unit is that it makes the representation of atomic masses easier in terms of the simplicity of the numbers that are used to represent the masses. Also using the atomic mass unit it is easier to compare the masses of different atoms, These numbers would be very small and would require negative powers of 10 to represent them, so it is more convenient to use the atomic mass unit.

3 0
3 years ago
What is the displacement of the car between t=1s and t=4s
tensa zangetsu [6.8K]

Answer:

Option C. 30 m

Explanation:

From the graph given in the question above,

At t = 1 s,

The displacement of the car is 10 m

At t = 4 s

The displacement of the car is 40 m

Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:

Displacement at t = 1 s (d1) = 10 m

Displacement at t= 4 s (d2) = 40

Displacement between t = 1 and t = 4 (ΔD) =?

ΔD = d2 – d1

ΔD = 40 – 10

ΔD = 30 m.

Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.

4 0
3 years ago
Other questions:
  • An iron nail is made up of particles. What is true about the particles?
    6·2 answers
  • Displacement time squared graph
    8·1 answer
  • What are the five events that can trigger a mass movement
    8·1 answer
  • What does classify mean
    14·2 answers
  • The single invention of the ______ has advanced what we know about the universe more than any other scientific technology. a. Su
    9·1 answer
  • A ball with a mass of 3.7 kg is thrown downward with an initial velocity of 8 m/s from a high building. How fast will it be movi
    9·1 answer
  • A car speeds up from 14 meters per second to 21 meters per second in 6 seconds. Whats the acceleration and the distance passed w
    14·1 answer
  • Solubility Curve Practice Problems Worksheet 1
    6·1 answer
  • Một điện lượng 60mC dịch chuyển qua tiết diện thẳng của dây dẫn trong khoảng
    13·1 answer
  • A skateboarder is moving at the speed of 3 m/s2. while traveling, the skateboard comes to a complete stop. The skateboarder howe
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!