Answer:
vgffffgggggvghvxgyfdgubvhumigrrdghg
Hello!
Ok so for this problem we use the ideal gas law of PV=nRT and I take it that the scientist needs to store 0.400 moles of gas and not miles.
So if we have
n=0.400mol
V=0.200L
T= 23degC= 273k+23c=296k
R=ideal gas constant= 0.0821 L*atm/mol*k
So now we rearrange equation for pressure(P)
P=nRT/V
P=((0.400mol)*(0.0821 L*atm/mol*k)*(296k))/(0.200L) = 48.6 atm of pressure
Hope this helps you understand the concept and how to solve yourself in the future!! Any questions, please feel free to ask!! Thank you kindly!!!
Answer:
D
Explanation:
We know that the
reaction catalyzing power of a catalyst ∝ surface area exposed by it
Given
volume V1= 10 cm^3
⇒
hence r= 1.545 cm
also, surface area S1= 
now when the sphere is broken down into 8 smaller spheres
S2= 8×4πr'^2
now, equating V1 and V2 ( as the volume must remain same )

and solving we get
r'= r/2
therefore, S2=
S2=
S2= 2S1
hence the correct answer is
. The second run has twice the surface area.
Solution :
Molar mass of
is :
M = 6×12 + 6×1 g
M = 78 g
78 gram of
contains
molecules.
So, 89.5 gram of
contains :

Now, from the formula we can see that one molecule of
contains 2 hydrogen atom . So, number of hydrogen atom are :

Hence, this is the required solution.
Answer:
I think the answer should be B. Number of valence electrons