Answer:
Isotopes of an element have same number of protons but different number of neutrons. Which means isotopes of an element have same atomic number but different mass number.
The chemical property of an element is determined by the number of electrons. And as all the isotopes have same number of electrons, they have same chemical properties.
Thus as isotopes of an element have same atomic number , they have same number of electrons and protons. As they have different mass number, the number of neutrons will be different. Hydrogen has three isotopes ,
,
and
. Thus
has no neutron.
It would still have oceans but no atmospheric water in Earth if no icy debris had arrived.
A. It would still have oceans but no atmospheric water.
<u>Explanation:</u>
Seas characterize our home planet, covering most of the Earth's surface and driving the water cycle that commands our territory and climate. However, progressively significant still, the narrative of our seas wraps our home in a far bigger setting that ventures profound into the universe and spots us in a rich group of sea universes that range our nearby planetary group and past.
It would in any case have seas yet no air water on Earth if no frigid flotsam and jetsam had shown up. For a long time, it was accepted that the frosty moons were only that - solidified husks, strong to their center. However, lately that thought has steadily been supplanted by a fresher, additionally energizing worldview.
Try adding spaces next time! That's iodine. Check all of the numbers to make sure all of the orbitals are filled, then find the ones which aren't. In this one, only the 5p5 subshell isn't full. 5p5 is the fifth row on the right side, count across the nonmetals and metalloids until the fifth one (a halogen). That's iodine, and that's your answer!