W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
Answer:
19.68 × 10⁻³ m
Explanation:
Given;
Original Length, L₁ = 41.0 m
Temperature Change, ΔT = 40.0°C
Thermal Linear expansion of steel is given to be, ∝
= 12 × 10⁻⁶ /°C
Generally, Linear expansivity is expressed as;
∝ = ΔL / L₁ΔT
Where
∝ is the Linear expansivity
ΔL is the change in length, L₂ - L₁
L₂ is the final length
L₁ is the original length
ΔT is the change in temperature θ₂ - θ₁ (Final Temperature - Initial Temperature)
From equation of linear expansivity
ΔL = ∝
L₁ΔT
ΔL = 12 × 10⁻⁶ /°C × 41.0 m × 40.0 °C
ΔL = 19.68 × 10⁻³ m
ΔL = 19.68 mm
Kinetic energy can be passed from one object to another when objects collide,
Answer: True
Hope This Helps! :3