You mean like a box sitting on a table.
One force is the force of gravity, pulling downward on the box.
Now, you know that the forces acting on the box must be balanced, because
if they're not, then the box would be accelerating. But it's just sitting there, so
there must be some other force, just exactly the right strength and direction to
exactly cancel the force of gravity on the box, so that the net force on it is zero.
The other force is the force of the table pushing upward on the box. It's called
the "normal force".
Venus goes through phases similar to those of earths moon.
Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
Answer:
m/s
Explanation:
Assumptions: 0° is true North, and 90° is east (along the x-axis).
To solve this problem we must use the expression:

Where
is the velocity in the y-direction (East),
is the total velocity in the direction which the aircraft is travelling, and
is the direction the aircraft is travelling (angle from the y-axis).
Using the equation above, we obtain the y-component of velocity
m/s which is rounded to 227 m/s (due to the number of significant figures in the question).
Answer:
-14.2m/s
Explanation:
Given parameters:
Initial velocity of the ball = 25m/s
Time = 4s
Unknown:
Final velocity of the ball = ?
Solution:
To solve this problem, we use the expression below;
v = u - gt
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
t is the time
v = 25 - (9.8 x 4) = -14.2m/s