the answer is B- are renewable resources
data which is expressed in form of following way

here in above expression
= true value
= uncertainty in the value
now the relative uncertainty is given as

now by above formula we can say
a) 2.70 ± 0.05cm
here
True value = 2.70
uncertainty = 0.05
Relative uncertainty =
= 0.0185
b) 12.02 ± 0.08cm
here
True value = 12.02
uncertainty = 0.08
Relative uncertainty =
= 0.00665
If the collision is inelastic, there is every possibility that the large body will drag the small stationary body along with it in the direction of the collision. Some amount of heat, light and sound energy will also be produced due to the kinetic energy of the large body. I hope the answer helps you.
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
They help scientists explain concepts that are difficult to observe.