The total quantity of heat evolved in converting the steam to ice is determined as -12,928.68 J.
<h3>
Heat evolved in converting the steam to ice</h3>
The total heat evolved is calculated as follows;
Q(tot) = Q1(steam to boiling point) + Q2(boiling point to ice) +Q3(freezing to -42 ⁰C)
where;
Q = = mcΔθ
where;
- m is mass, (mass of water = 18 g/mol)
- c is specific heat capacity,
- Δθ is change in temperature
Q(tot) = 2(18)(2.01)(100 - 135) + 2(18)(2.01)(0 - 100) + 2(18)(2.09)(-42 - 0)
Q(tot) = -12,928.68 J
Thus, the total quantity of heat evolved in converting the steam to ice is determined as -12,928.68 J.
Learn more about heat here: brainly.com/question/13439286
#SPJ1
The most common pairing would be sodium forming an ion after transfering an electron to chlorine
Answer : The specific heat of metal is
.
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of metal = ?
= specific heat of water = 
= mass of metal = 129.00 g
= mass of water = 45.00 g
= final temperature = 
= initial temperature of metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat of metal is
.
Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

The earth has the moon captured in its gravity. this keeps the moon in an elliptical orbit