Answer:
John Newlands
Explanation:
he established the law of octaves
Answer:
It would be an isotope.
Background Information:
Isotopes are typically elements that have a different number of protons than neutrons. The atomic mass is the total number of protons and neutrons. The atomic number is the number of protons.
Explanation:
If the atomic number is the number of protons that means that this particular element has 8 protons. If the atomic mass is the total number of protons and neutrons then we can simply take away the amount of protons from that number, 18 - 8 = 10. If we take protons away from the number of protons and neutrons we are left with the number of neutrons. So there are 10 neutrons. Because there are 8 protons and 10 neutrons, or a different amount of neutrons and protons we know that this particular atom is an isotope.
Positive ions are formed by atoms or molecules suffering an inelastic collision with an energetic electron in which an electron is lost from the atom or molecule (electron impact ionization). The degree of ionization of the plasma depends strongly on the electron density and energy distribution in the gas.
<span>During cooling, the kinetic energy of the molecules falls, be</span>cause, when cooling a substace, the particles (molecules) slow down.
The kinetic energy is related to the speed, such that the lower speed the lower kinetic energy.
Particles can translate and vibrate, in the case of gases and liquids, and only vibrate (in the case of solids).
As a substance is cooled the particles get closer and the motion (translation and vibration), slows down. You can see by the equation of the kinetic energy (KE):
KE = [1/2]mass×(speed)² that as the speed is lower the KE will also be lower.
Additionally, when the cooling does not drive a change of phase (gas to liquid, liquid to solid, or solid to gas), it drives a decrease on temperature. In this case you should know that the temperature is a measure of the kinetic energy: the lower the temperature, the lower the kinetic energy.
Answer:
The pH and pOH of a 2.2*10⁻³ HBr solution is 2.66 and 11.34 respectively.
Explanation:
pH - short for hydrogen potential - is a measure of the acidity or alkalinity of a solution. So the pH is a parameter that indicates the concentration of hydrogen ions [H]⁺ that exist in a solution.
The pH is expressed as the negative base 10 logarithm of the hydrogen ion concentration. This is represented by:
pH= - log [H⁺]
pH is measured on a scale of 0 to 14. On this scale, a pH value of 7 is neutral, which means that the substance or solution is neither acidic nor alkaline. A pH value of less than 7 means that it is more acidic, and a pH value of more than 7 means that it is more alkaline.
HBr is a strong acid. Then, in aqueous solution it will be totally dissociated. So the proton concentration is equal to the initial concentration of acid:
[H⁺]= [HBr]= 2.2*10⁻³ M
So:
pH= - log (2.2*10⁻³)
pH= 2.66
On the other hand, pOH is a measure of the concentration of hydroxyl ions in a solution. The sum of pH and pOH equals 14:
pH + pOH= 14
2.66 + pOH= 14
pOH= 14 - 2.66
pOH= 11.34
<u><em>The pH and pOH of a 2.2*10⁻³ HBr solution is 2.66 and 11.34 respectively.</em></u>