Answer:
the same type because they both formed from rock material.
Explanation:
Answer: the player pushing down on the floor
Explanation:
Answer:
a) 19.4 m/s
b) 19 m/s
Explanation:
a) In the given question,
the potential energy at the initial point = Ui = 0
the potential energy at the final point = Uf = mgh
the kinetic energy at the initial point = Ki = 1/2 mv₀².
the kinetic energy at the final point = Kf = 0
work done by air= Ea= fh = 0.262 N
Now, using the law of conservation of energy
initial energy= final energy
Ki +Ui = Kf + Uf +Ea
1/2 mv₀² + 0 = 0 + mgh + fh
1/2 mv₀² = mgh + fh
h = v₀²/ 2g (1 +f/w)
calculate m
m= w/g = 5.29 /9.8
= 0.54 kg
h = 20 ²/ (2 x9.80) x (1 0.265/5.29)
h = 19.4 m.
b) 1/2 mv² + 2fh = 1/2 mv₀²
Vg = 19 m/s
Answer:
<h3>Our universe may live in one bubble that is sitting in a network of bubble universes in space. ... The concept is known as a "parallel universe," and is a facet of the astronomical theory of the multiverse. The idea is pervasive in comic books, video games, television and movies.</h3>
Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.