Answer:
The angle of incidence when the reflected ray is perpendicular to the incident ray = 45°
Explanation:
According to Snell's Law,
n₁ sin θ₁ = n₂ sin θ₂
When the angle between the incident ray and reflected ray is 90°, the angle of incidence is θ₁ and the angle of reflection, θ₂ = 90° - θ₁ and the index of refraction in the Snell's Law for both media would be the same, n₁ = n₂ = n
n sin θ₁ = n sin (90° - θ₁)
Note that from trigonometric relations,
Sin (90° - θ₁) = cos θ₁
n sin θ₁ = n cos θ₁
(sin θ₁)/(cos θ₁) = 1
tan θ₁ = 1
θ₁ = arctan 1 = 45°
Hope this Helps!!!
Answer:
-589.05 J
Explanation:
Using work-kinetic energy theorem, the work done by friction = kinetic energy change of the base runner
So, W = ΔK
W = 1/2m(v₁² - v₀²) where m = mass of base runner = 72.9 kg, v₀ = initial speed of base runner = 4.02 m/s and v₁ = final speed of base runner = 0 m/s(since he stops as he reaches home base)
So, substituting the values of the variables into the equation, we have
W = 1/2m(v₁² - v₀²)
W = 1/2 × 72.9 kg((0 m/s)² - (4.02 m/s)²)
W = 1/2 × 72.9 kg(0 m²/s² - 16.1604 m²/s²)
W = 1/2 × 72.9 kg(-16.1604 m²/s²)
W = 1/2 × (-1178.09316 kgm²/s²)
W = -589.04658 kgm²/s²
W = -589.047 J
W ≅ -589.05 J
- Let, the maximum height covered by projectile be


- Projectile is thrown with a velocity = v
- Angle of projection = θ
- Velocity of projectile at a height half of the maximum height covered be

______________________________
Then –










- Now, the vertical component of velocity of projectile at the height half of
will be –


Therefore, the vertical component of velocity of projectile at this height will be–
☀️

Answer:
Approximately 6.8 x 10⁻¹⁵
Explanation:
To be able to get this fraction, there are some things we need to know.
1. The radius of nucleus = 1.0 x 10⁻¹³ cm
2. The radius of hydrogen atom = 52.9 pm
3. Volume of sphere = V1/V2 = (R1/R2)^3
4. 1 picometer (pm) = 10^-10 cm
CHECK ATTACHMENT FOR Step by step solution to the answer