Answer:
Molar mass of Al2O3 = 101.961276 g/mol
This compound is also known as Aluminium Oxide.
Convert grams Al2O3 to moles or moles Al2O3 to grams
Molecular weight calculation:
26.981538*2 + 15.9994*3
Percent composition by element
Element Symbol Atomic Mass # of Atoms Mass Percent
Aluminium Al 26.981538 2 52.925%
Oxygen O 15.9994 3 47.075%
Explanation:
Percent composition by element
Element Symbol Mass Percent
Aluminium Al 52.925%
Oxygen O 47.075%
Answer:
23.8g
Explanation :
Convert 2.0M into mol using mol= concentration x volume
2.0M x 0.1L (convert 100mL to L since the units for M is mol/L)
= 0.2 mol
We can now find grams by using the molar mass of KBr
=119.023 g/mol (Found online) webqc.org
but can be be calculated by using the molecular weight of K and Br found on the periodic table
We can now calculate the grams by using grams=mol x molar mass
119.023g/mol x 0.2mol
= 23.8046 g
=23.8g (rounded to 1decimal place)
Answer: Hello i am confused are you asking a question?
Explanation:
Answer:
In this case, the system doesn't be affected by the pressure change. This means that nothing will happen
Explanation:
We can answer this question applying the Le Chatelier's Principle. It says that changes on pressure, volume or temperature of an equilibrium reaction will change the reaction direction until it returns to the equilibrium condition again.
The results of these changes can define as:
Changes on pressure: the reaction will move depending the quantity of moles on each side of the reaction
Changes on temperature: The reaction will move depending on if it's endothermic or exothermic
Changes on volume: The reaction will move depending the limit reagent and the quantity of moles on each side of the reaction
In the exercise, they mention a change on pressure of the system at constant temperature (that means the temperature doesn't change). As Le Chatelier Principle's says, we must analyze what happens if the pressure increase or decrease. If pressure increase the reaction will move on the side that have less quantity of moles, otherwise, if the pressure decreases the reaction will move to the side that have more quantity of moles. In this case, we can see that both sides of the equation have the same number of moles (2 for the reactants and 2 for the products). So, in this case, we can conclude that, despite the change on pressure (increase or decrease), nothing will happen.