1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
9

What state of matter did the earth need to be in order for planetary differentiation to occur?

Physics
1 answer:
STatiana [176]3 years ago
8 0
Gas. I know this because first you will need to do the equator so I will say gas
You might be interested in
Someone please help me
Lapatulllka [165]
False... I hope that helps ;)
6 0
3 years ago
A 6 kg ball experiences a 5 m/s^2 acceleration. What is the strength of the force felt by the ball?
iren2701 [21]

Answer:

30 newtons

explanations

data given

mass=6kg

acceleration=5

f=m×a

6×5=30

3 0
3 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Alborosie

Answer:

I = 4.75 A

Explanation:

To find the current in the wire you use the following relation:

J=\frac{E}{\rho}      (1)

E: electric field E(t)=0.0004t2−0.0001t+0.0004

ρ: resistivity of the material = 2.75×10−8 ohm-meters

J: current density

The current density is also given by:

J=\frac{I}{A}        (2)

I: current

A: cross area of the wire = π(d/2)^2

d: diameter of the wire = 0.205 cm = 0.00205 m

You replace the equation (2) into the equation (1), and you solve for the current I:

\frac{I}{A}=\frac{E(t)}{\rho}\\\\I(t)=\frac{AE(t)}{\rho}

Next, you replace for all variables:

I(t)=\frac{\pi (d/2)^2E(t)}{\rho}\\\\I(t)=\frac{\pi(0.00205m/2)^2(0.0004t^2-0.0001t+0.0004)}{2.75*10^{-8}\Omega.m}\\\\I(t)=4.75A

hence, the current in the wire is 4.75A

4 0
3 years ago
PLEASE HELP I WILL GOVE BRAINLIEST TO FIRST CORRECT ANSWER!!!!!
Dmitrij [34]
Answer is C is the correct answer
8 0
3 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • A green croquet ball of mass 0.50 kg is rolling at +12 m/s. It collides with a blue croquet ball that also
    11·1 answer
  • An outstretched arm of a person is held at an angle θ= 16.0° below the horizon and a 16.0 N weight is placed in the hand. The sh
    6·1 answer
  • A statement that the energy supplied to a system in the form of heat, minus the work done by the system, is equal to the change
    12·1 answer
  • Figure 3 shows a bicycle of mass 15 kg resting in a vertical position, with the front and back
    7·1 answer
  • Which of the following equations represents Ohm’s Law? Select all that apply.
    6·2 answers
  • A rocket being thrust upward as the force of the fuel being burned pushes downward is an example of which of Newton's laws?
    11·2 answers
  • Two balls are thrown off a building with the same speed, one straight up and one at a 45° angle. Which statement is true if air
    9·1 answer
  • DESPERATE WILL GIVE BRAINLIST AND THANKS
    6·1 answer
  • In which direction does the magnetic field in the center of the coil point?
    5·1 answer
  • A coolie carries a load of 500 N to a distance of 100 m on a horizontal platform. The work done by him is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!