Hello,
Please, see the attached file.
Thanks.
Each bike has two tires, while each quad has four tires. Therefore the number of tires Ruby has to other is given by the number of tires used by the bikes added by the number of tires used by the quads. This is shown on the expression below:
The y intercept is (0,-2)
Arithmetic sequences have a common difference between consecutive terms.
Geometric sequences have a common ratio between consecutive terms.
Let's compute the differences and ratios between consecutive terms:
Differences:

Ratios:

So, as you can see, the differences between consecutive terms are constant, whereas ratios vary.
So, this is an arithmetic sequence.
Answer:
![x=(243)log_{\frac{1}{81}}[(\frac{1}{81})-1]](https://tex.z-dn.net/?f=x%3D%28243%29log_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D)
Step-by-step explanation:
you have the following formula:

To solve this equation you use the following properties:

Thne, by using this propwerty in the equation (1) you obtain for x
![log_{(\frac{1}{81})}(\frac{1}{81})^{\frac{x}{243}}=log_{\frac{1}{81}}[(\frac{1}{81})-1]\\\\\frac{x}{243}=log_{\frac{1}{81}}[(\frac{1}{81})-1]\\\\x=(243)log_{\frac{1}{81}}[(\frac{1}{81})-1]](https://tex.z-dn.net/?f=log_%7B%28%5Cfrac%7B1%7D%7B81%7D%29%7D%28%5Cfrac%7B1%7D%7B81%7D%29%5E%7B%5Cfrac%7Bx%7D%7B243%7D%7D%3Dlog_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D%5C%5C%5C%5C%5Cfrac%7Bx%7D%7B243%7D%3Dlog_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D%5C%5C%5C%5Cx%3D%28243%29log_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D)