The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1
K = 1/2 m x v^2
m = mass on the cart
V = velocity imparted to the cart
KA = 1/2 mA x vA^2.......................(1)
KB = 1/2 mB x vB^2........................(2)
Diving equation 1 by equation 2, we get -
KA/KB = mA/mB
= 2
KA = 2 x KB
Option A is correct
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s
Answer:
The specific heat capacity is the heat or energy required to change one unit mass of a substance of a constant volume by 1 °C. The formula is Cv = Q / (ΔT ⨉ m)
Answer:
0.5kg
Explanation:
Given parameters:
Potential energy = 147J
Height = 30m
Unknown:
Mass of the bird = ?
Solution:
Potential energy is the energy due to the position of a body. Now, the expression for finding the potential energy is given as;
P.E = mgH
m is the mass
g is the acceleration due to gravity = 9.8m/s²
H is the height
147 = m x 9.8 x 30
m = 0.5kg