Answer:
option B.
Explanation:
The correct answer is option B.
when the ball drops, the velocity of the ball before the collision is v
After the collision, the velocity of the ball is the same but in the opposite direction.
Impulse delivered to the ball and the floor, in this case, is not zero.
The magnitude of the momentum remains the same but the direction of the ball changes.
Answer:
cross out the false piece in blue and write the true piece in red
An insulator which is also called a 'dielectric'.
Answer:
Equivalent resistance: 13.589 Ω
Explanation:
R series = R1 + R2 + R3 ...

Find the equivalent resistance of the right branch of the circuit:


Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.