Answer:
1 m
Explanation:
L = 100 m
A = 1 mm^2 = 1 x 10^-6 m^2
Y = 1 x 10^11 N/m^2
F = 1000 N
Let the cable stretch be ΔL.
By the formula of Young's modulus



ΔL = 1 m
Thus, the cable stretches by 1 m.
Answer:
The sun looks bigger than other stars because it is closer to the Earth, distance makes it look larger
The stage where atoms are spread out and bouncy is the gas stage.
Answer:
L = 2.8 cm
Explanation:
Period T = 4 / 12 = 1/3 s
T = 2π√(L/g)
L = (T/2π)²g
L = ((1/3)/2π)²9.8 = 0.02758... ≈ 2.8 cm
Answer:
a) t = 0.0185 s = 18.5 ms
b) T = 874.8 N
Explanation:
a)
First we find the seed of wave:
v = fλ
where,
v = speed of wave
f = frequency = 810 Hz
λ = wavelength = 0.4 m
Therefore,
v = (810 Hz)(0.4 m)
v = 324 m/s
Now,
v = L/t
where,
L = length of wire = 6 m
t = time taken by wave to travel length of wire
Therefore,
324 m/s = 6 m/t
t = (6 m)/(324 m/s)
<u>t = 0.0185 s = 18.5 ms</u>
<u></u>
b)
From the formula of fundamental frquency, we know that:
Fundamental Frequency = v/2L = (1/2L)(√T/μ)
v = √(T/μ)
where,
T = tension in string
μ = linear mass density of wire = m/L = 0.05 kg/6 m = 8.33 x 10⁻³ k gm⁻¹
Therefore,
324 m/s = √(T/8.33 x 10⁻³ k gm⁻¹)
(324 m/s)² = T/8.33 x 10⁻³ k gm⁻¹
<u>T = 874.8 N</u>