Answer:
will be 90054 J
Explanation:
Number of moles = (mass)/(molar mass)
Molar mass of
= 134.45 g/mol
So, 1.00 g of
=
of
= 0.00744 mol of 
0.00744 mol of
produces 670 J of heat
So, 1 mol of
produces
of heat or 90054 J of heat
The moon should be between the sun and Earth
<u>Answer:</u> The amount remained after 151 seconds are 0.041 moles
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 151 sec
= initial amount of the reactant = 0.085 moles
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.82\times 10^{-3}=\frac{2.303}{151}\log\frac{0.085}{[A]}](https://tex.z-dn.net/?f=4.82%5Ctimes%2010%5E%7B-3%7D%3D%5Cfrac%7B2.303%7D%7B151%7D%5Clog%5Cfrac%7B0.085%7D%7B%5BA%5D%7D)
![[A]=0.041moles](https://tex.z-dn.net/?f=%5BA%5D%3D0.041moles)
Hence, the amount remained after 151 seconds are 0.041 moles
Answer: let me figure it out rlly quick
Explanation:
I think this is what you mean:
H H H H
H-C-C-C-C-H
H H H H
OR
<span>CH3CH2CH2CH3
</span>
If not, clarify and I will be happy to help.