Answer:
Explanation:
All the displacement will be converted into vector, considering east as x axis and north as y axis.
5.3 km north
D = 5.3 j
8.3 km at 50 degree north of east
D₁= 8.3 cos 50 i + 8.3 sin 50 j.
= 5.33 i + 6.36 j
Let D₂ be the displacement which when added to D₁ gives the required displacement D
D₁ + D₂ = D
5.33 i + 6.36 j + D₂ = 5.3 j
D₂ = 5.3 j - 5.33i - 6.36j
= - 5.33i - 1.06 j
magnitude of D₂
D₂²= 5.33² + 1.06²
D₂ = 5.43 km
Angle θ
Tanθ = 1.06 / 5.33
= 0.1988
θ =11.25 ° south of due west.
Answer:
yes it could deform a shape or an object
Explanation:
The final velocity is a vector quantity that measures the speed and direction of a moving body after it has reached its maximum acceleration
Answer: Three forces act significantly on a freely floating helium-
filled balloon: gravity, air resistance (or drag force), and a
buoyant force.
Explanation:
The air pressure on the bottom of the balloon is slightly higher than the air pressure on the top of the balloon (because of the altitude difference). This difference gives rise to the bouyant force. This force competes with gravity as the two main forces acting on the balloon. Every time your feet hit the ground when you are running, the ground hits your feet with an equal and opposite force. Newton’s third law explains how balloons and rocket engines work. When the neck of an inflated balloon is released, the stretched rubber material pushes against the air in the balloon. The air rushes out of the neck of the balloon.