Answer:
because they are the rocks that line the surface of our planet
Explanation:
We see sedimentary rocks more than other rock types because they are the rocks that line the surface of our planet.
Sedimentary rocks typically form the earth cover due to the way they are formed.
- These rocks are produced by the weathering, transportation and deposition of sediments within a basin.
- In this basin, the sediment is lithified and converted to sedimentary rocks.
- These processes are driven by the external heat engine
- Therefore, it is confined to the surface.
- Igneous and metamorphic rock's processes are confined to the subsurface.
-- Accelerating at the rate of 8 m/s², Andy's speed
after 30 seconds is
(8 m/s²) x (30.0 s) = 240 m/s .
-- His average speed during that time is
(1/2) (0 + 240 m/s) = 120 m/s .
-- In 30 sec at an average speed of 120 m/s,
Andy will travel a distance of
(120 m/s) x (30 sec) = 3,600 m
= 3.6 km .
"But how ? ! ?", you ask.
How in the world can Andy leave a stop light and then
cover 3.6 km = 2.24 miles in the next 30 seconds ?
The answer is: His acceleration of 8 m/s², or about 0.82 G
is what does it for him.
At that rate of acceleration ...
-- Andy achieves "Zero to 60 mph" in 3.35 seconds,
and then he keeps accelerating.
-- He hits 100 mph in 5.59 seconds after jumping the light ...
and then he keeps accelerating.
-- He hits 200 mph in 11.2 seconds after jumping the light ...
and then he keeps accelerating.
-- After accelerating at 8 m/s² for 30 seconds, Andy and his
car are moving at 537 miles per hour !
We really don't know whether he keeps accelerating,
but we kind of doubt it.
A couple of observations in conclusion:
-- We can't actually calculate his displacement with the information given.
Displacement is the distance and direction between the starting- and
ending-points, and we're not told whether Andy maintains a straight line
during this tense period, or is all over the road, adding great distance
but not a lot of displacement.
-- It's also likely that sometime during this performance, he is pulled
over to the side by an alert cop in a traffic-control helicopter, and
never actually succeeds in accomplishing the given description.
Answer:
The answer is B.
Explanation:
They are in control of the experiment, they can change it the variables to better help the experiment.
To solve this problem we will resort to the concept of angle of incidence and refraction.
Since it is a reflection on a mirror, the angle provided for refraction will be equal to that of the incidence, that is, 25 °
The angle of reflation is always perpendicular to the surface so it is necessary to find the angle with respect to it.


Therefore the angle of the reflected beam of light made with the surface normal is 65°
Answer:
We use electrolysis to prevent a material from rusting,
The metal forms a coating around the material and hence prevents any contact between the material and the environment
This process also gives us the physical strength of the material and the aesthetic properties of the coated metal
the metal commonly used to coat the object is Zinc and the process is called galvanisation