I think the answer is yes, but i might be wrong
Answer:
F=G(m1m2)/Rsquare if radius is given
F=G(m1m2)/dsquare if distance is given
where,
f =gravitational force
G =gravitational constant
m1=mass of one object
m2=mass of another object
d=distance between two object from their center r=radius of earth/planet
Answer:
X(t) = 9.8 *t - 4.9 * t^2
Explanation:
We set a frame of reference with origin at the hand of the girl the moment she releases the ball. We assume her hand will be in the same position when she catches it again. The positive X axis point upwards.The ball will be subject to a constant gravitational acceleration of -9.81 m/s^2.
We use the equation for position under constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a *t^2
X0 = 0 because it is at the origin of the coordinate system.
We know that at t = 2, the position will be zero.
X(2) = 0 = V0 * 2 + 1/2 * -9.81 * 2^2
0 = 2 * V0 - 4.9 * 4
2 * V0 = 19.6
V0 = 9.8 m/s
Then the position of the ball as a function of time is:
X(t) = 9.8 *t - 4.9 * t^2
Pearl Ash is an example of an Impure Potassium Carbonate