Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From there we will define the distance as the circumference of the earth (approximate as a sphere). With the speed given in the statement we will simply clear the equations below and find the time.



The circumference of the earth would be

Velocity is defined as,


Here
, then


Therefore will take 167463.97 s or 1 day 22 hours 31 minutes and 3.97seconds
Explanation:
Could you also show the diagram