Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
He made pioneering contributions to all fields of philosophy and science, he invented the field of formal logic, and he identified the various scientific disciplines and explored their relationships to each other. Aristotle was also a teacher and founded his own school in Athens, known as the Lyceum.
Answer:
Remain the same
Explanation:
There is no relationship between amplitude frequency.
<span>553 ohms
The Capacitive reactance of a capacitor is dependent upon the frequency. The lower the frequency, the higher the reactance, the higher the frequency, the lower the reactance. The equation is
Xc = 1/(2*pi*f*C)
where
Xc = Reactance in ohms
pi = 3.1415926535.....
f = frequency in hertz.
C = capacitance in farads.
I'm assuming that the voltage and resistor mentioned in the question are for later parts that are not mentioned in this question. Reason is that they have no effect on the reactance, but would have an effect if a question about current draw is made in a later part. With that said, let's calculate the reactance.
The 120 rad/s frequency is better known as 60 Hz.
Substitute known values into the formula.
Xc = 1/(2*pi* 60 * 0.00000480)
Xc = 1/0.001809557
Xc = 552.6213302
Rounding to 3 significant figures gives 553 ohms.</span>
Answer:
attached below is the free body diagram of the missing illustration
Initial kinetic energy of the electron = 3 eV
Explanation:
The conclusion that can be drawn about the kinetic energy of the electron is
![E_{e} = E_{3} - E_{1}](https://tex.z-dn.net/?f=E_%7Be%7D%20%3D%20E_%7B3%7D%20%20-%20E_%7B1%7D)
E
= initial kinetic energy of the electron
E
= -4 eV
E
= -1 eV
insert the values into the equation above
= -1 -(-4) eV
= -1 + 4 = 3 eV