The component of the dri reflects the requirement of a nutrient for 50 percent of healthy americans and canadians in a specific life stage and gender is Estimated Average Requirement (EAR).
What is EAR?
A daily food intake number known as the Estimated Average Requirement (EAR) is one that is thought to satisfy the needs of 50% of healthy persons in a given life stage and gender group.
Based on a review of the scientific literature, the estimated average requirements (EAR) are predicted to meet the needs of 50% of the population in that age range.
It serves as the foundation for the creation of RDAs and is employed to assess the sufficiency of nutritional consumption for a given population.
To learn more about EAR click the given link
brainly.com/question/14449512
#SPJ4
M1m1 = M2m2
where M1 is the concentration of the stock solution, m1 is the
mass of the stock solution, M2 is the concentration of the new solution and
m2 is its new mass.
M1m1 = M2m2
.925(m1) = .35(250)
m1 = 94.59 g
Answer:
0.022 mol O
Explanation:
Mg3(Si2O5)2(OH)2
We can see that 1 mol of this substance has 3 mol of Mg.
Oxygen altogether is 5*2 (from (Si2O5)2) + 2(from(OH)2) = 10 +2 = 12
So, 1 mol of this substance has 12 mol oxygen.
So, 1 mol of this substance contains 3 mol Mg and 12 mol O, or
ratio Mg : O = 3 : 12 = 1 : 4
1 mol Mg ----- 4 mol O
0.055 mol Mg ---x mol O
x = 0.055*4/1 = 0.220 mol O
start the balancing by writing down how many atoms there are per element. we’ll use this as an example:
C3H8 + O2 --> H2O + CO2
C = 3 C = 1
H = 8 H = 2
O = 2 O = 3
balance the carbon first, as it is easiest to do. add a coefficient to the single carbon atom on the right of the equation to balance it with the 3 carbon atoms on the left of the equation:
C3H8 + O2 --> H2O + (3)CO2
now there are 3 carbon atoms on each side. however, when you do this, you multiply the amount of oxygen atoms you had. therefore, now, there are 6 carbon atoms in 3CO2, plus that other oxygen atom in H2O. you now have 7 O atoms instead of 3.
C = 3 C = 3
H = 8 H = 2
O = 2 O = 7
now let’s move on to the hydrogen atoms.
C3H8 + O2 --> H2O + 3CO2
you have 8 hydrogen atoms on the left side, and 2 on the right. in order to balance them, you have to multiply the right side’s hydrogen atoms by 4. 4(2) = 8.
C3H8 + O2 --> (4)H2O + 3CO2
now both hydrogen and carbon atoms are balanced. same amount on both sides. however, your oxygen atoms have changed due to the multiplying (right side). you now have 10 of them.
C = 3 C = 3
H = 8 H = 8
O = 2 O = 10
now we balance the oxygen atoms. multiply the left side of the equation’s oxygen atoms by 5. 5(2) = 10
C3H8 + (5)O2 --> 4H2O + 3CO2
the chemical equation is all balanced. basically, just multiply with numbers until it equals the same amount on both sides.
C = 3 C = 3
H = 8 H = 8
O = 10 O = 10
Answer:
You need to add 19,5 mmol of acetates
Explanation:
Using the Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [base]/[acid]
For the buffer of acetates:
pH = pKa + log₁₀ [CH₃COO⁻]/[CH₃COOH]
As pH you want is 5,03, pka is 4,74 and milimoles of acetic acid are 10:
5,03 = 4,74 + log₁₀ [CH₃COO⁻]/[10]
1,95 = [CH₃COO⁻]/[10]
<em>[CH₃COO⁻] = 19,5 milimoles</em>
Thus, to produce an acetate buffer of 5,03 having 10 mmol of acetic acid, you need to add 19,5 mmol of acetates.
I hope it helps!