Answer:
The answer is I=70,513kgm^2
Explanation:
Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.
When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius
Now we will find the Moment of Inertia this way:
->
Replacing we get that I is:
Then
In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is:
True: Friction depends on the types of surfaces involved and how hard the surfaces push together.
Answer:
At point A, the cart has high potential energy. At point b, the cart is pulled down by gravity. At point c, the cart gains its highest kinetic energy. At point d, the cart returns back to the same state but with lower potential energy.
Acceleration = Change in Velocity / time
a = (v - u) / t
Where v = final velocity in m/s
u = initial velocity in m/s
t = time in seconds.
a = acceleration in m/s²
A proper record of the changes in velocity with the corresponding time would help find the acceleration.
Here As we can see the figure that the end of the rope is pulled by some force F
Now as we can see that Piano is connected by a pulley which is passing over the pulley so effectively net force on the piano upwards will be 2F as it is connected by 2 ropes by the pulley
Now for constant velocity of the piano we will say

since velocity is constant so acceleration must be ZERO
so here we have

as we know here that
mg = 1000 N
so we will have


so here force must be 500 N