Answer:
1.38*10^18 kg
Explanation:
According to the Newton's law of universal gravitation:

where:
G= Gravitational constant (6.674×10−11 N · (m/kg)2)
ma= mass of the astronaut
mp= mass of the planet

so:

Answer: 25 Ohms
Explanation:
From this question, the following parameters are given:
Voltage V = 1.5 v
Current I = 0.03A
From Ohm's law;
V = IR
Where R = resultant resistance of the two resistors.
Substitute V and I into the formula and make resultant R the subject of formula.
1.5 = 0.03 × R
R = 1.5/0.03
R = 50 Ohms
From the question, it is given that Thr two equal resistors are connected in series.
R = R1 + R2
But R1 = R2
50 = 2R1
R1 = 50/2
R1 = 25
R1 = R2 = 25 Ohms
Therefore, the resistors must each have a value of 25 Ohms
Answer:
A
Explanation:
E. An ocean wave moving through water is an example of a mechanical wave
e.g sound waves wave on a rope or string
and Ans a is also correct
Answer:
18 m
Explanation:
Given : vo = 0 m/s ; t = 3 s; a = 4 m/s^2 ; d = ? m ; average velocity = ? m/s ; fonal velocity = ? m/s
solving for the final velocity, v
v = a * t
v = 4 m/s^2 * 3 s
v = 12 m / s
Solving for the average velocity. avg v
avg v = (vo + v) / 2
avg v = (0 m / s + 12 m/s) / 2
avg v = 6 m / s
Solving for the distance traveled after 3 s
d = avg v * t
d = 6 m / s * 3 s
d = 18 meters
In the first 3s the car travels 18 meters.
Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction

