Answer:
The deceleration is 
Explanation:
From the question we are told that
The height above firefighter safety net is 
The length by which the net is stretched is 
From the law of energy conservation

Where
is the kinetic energy of the person before jumping which equal to zero(because to kinetic energy at maximum height )
and
is the potential energy of the before jumping which is mathematically represented at

and
is the kinetic energy of the person just before landing on the safety net which is mathematically represented at

and
is the potential energy of the person as he lands on the safety net which has a value of zero (because it is converted to kinetic energy )
So the above equation becomes

=> 
substituting values

Applying the equation o motion

Now the final velocity is zero because the person comes to rest
So



Answer:
26325 m\s
Explanation:
Data:
v = ?
f = 117 Hz
w = 225
Formula:
v = fw
Solution:
v = ( 117)(225)
v = 26325 m\s <em>A</em><em>n</em><em>s</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
This is a Fraunhofer single slit experiment, where the light passing through the slit produces an interference pattern on the screen, and where the dark bands (minima of diffraction) are located at a distance of

from the center of the pattern. In the formula, m is the order of the minimum,

the wavelenght,

the distance of the screen from the slit and

the width of the slit.
In our problem, the distance of the first-order band (m=1) is

. The distance of the screen is D=86 cm while the wavelength is

. Using these data and re-arranging the formula, we can find a, the width of the slit:
Yes for an object moving on a horizontal plane, R = mg (where mg = weight). therefore, for an object moving on a horizontal plane: F = μmg
' +4 m/s² ' means that the pigeon's speed is 4 m/s greater every second.
Starting from zero speed, after 10 seconds, its speed is
(10 x 4m/s) = 40 m/s.
We can't say anything about its velocity, because we have
no information regarding the direction of its flight.