Answer:
92.6
Explanation:
6 mol x 18.02 g of H2o --> 3 mol x 58.33 g Mg(OH)2
108.12 g of h2o --> 174.99 of Mg(OH)2
g of H2O is 150 g of Mg(OH)2
150g x 108.12g / 174.99 =
92.67
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.
1) Chemical equation
Na2 SiO3 (s) + 8 HF (aq) ---> H2 Si F6 (aq) + 2 Na F (aq) + 3H2O (l)
It is balanced
2) Molar ratios
1 mol Na2 SiO3 : 8 mol HF.
3) Proportion
0.340 mol Na2 SiO3 * 8 mol HF / 1mol Na2SiO3 = 2.72 mol HF.
Answer: 2.72 mol HF
<u>Answer:</u> The final volume of the gas comes out to be 4 L.
<u>Explanation:</u>
To calculate the volume with changing pressure, we use the equation given by Boyle's law.
This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,
(At constant temperature and number of moles)
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the gas will be 4 L.