A colloid has the particles that have the ability to scatter light called the Tyndall effect named after the scientist named Tyndall. A suspension has large suspended particles that settle out at the bottom of the container. A solution has small particles that are evenly distributed throughout. Hence the answer is choice 2.
Answer:
0.0025moles
Explanation:
Molarity of a solution (M) = number of moles (n) ÷ volume (V)
According to this question, to make 250 mL of a 0.01 M solution of CaCl, the following number of moles is needed:
Volume = 250mL = 250/1000 = 0.250Litres.
Using; molarity = n/V
0.01 = n/0.250
n = 0.0025
n = 2.5 × 10^-3 moles.
The Doppler effect doesn't just apply to sound. It works with all types of waves, which includes light. Edwin Hubble used the Doppler effect to determine that the universe is expanding. Hubble found that the light from distant galaxies was shifted toward lower frequencies, to the red end of the spectrum. This is known as a red Doppler shift, or a red-shift. If the galaxies were moving toward Hubble, the light would have been blue-shifted.
The two of them both made models of the current atom, which was very excellent because now we could imagine how an atom would look. I would say that the best one was the electron orbital configuration because we needed to know what valence electrons are.
Answer:
D. 1.48atm
Explanation:
Van der waals equation is given as:
(P +an²/v²) (v - nb) = nRT
Where;
P = pressure (atm)
V = volume (L)
R = gas constant (0.0821 Latm/molK)
a and b = gas constant specific to each gas
T = temperature (K)
n = number of moles
According to the given information; V = 22.4L, T = 0.00°C (273.15K), R = 0.0821 Latm/molK, a = 6.49L^2-atm/mol^2, b = 0.0562 L/mol, n = 1.5mol
Hence;
(P + 6.49 × 1.5²/22.4²) (22.4 - 1.5×0.0562) = 1.5 × 0.0821 × 273.15
(P + 6.49 × 2.25/501.76) (22.4 - 0.0843) = 33.638
(P + 0.0291) (22.316) = 33.638
22.316P + 0.649 = 33.638
22.316P = 33.638 - 0.649
22.316P = 32.989
P = 32.989/22.316
P = 1.478
P = 1.48atm