Answer:
Explanation:
Let the velocity of projectile be v and angle of throw be θ.
The projectile takes 5 s to touch the ground during which period it falls vertically by 100 m
considering its vertical displacement
h = - ut +1/2 g t²
100 = - vsinθ x 5 + .5 x 9.8 x 5²
5vsinθ = 222.5
vsinθ = 44.5
It covers 160 horizontally in 5 s
vcosθ x 5 = 160
v cosθ = 32
squaring and adding
v²sin²θ +v² cos²θ = 44.4² + 32²
v² = 1971.36 + 1024
v = 54.73 m /s
Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
The solution to this ques is available in the image.
Given,
Force= 1N
Mass= 0.11kg
Time= 5sec
Force= mass X accelaration
Accelaration= velocity/ time
Speed=distance/ time
Hence, the speed is 45 m/s and the distance is 225 m.
To know more about speed and distance problems the link is given below:
brainly.com/question/19610984?
#SPJ4
The answer to your question is C.