Answer:
A mid ocean ridge possibly a plate margin spreading area
Explanation:
The answer is the first one. That's because the general theory of relativity is the thing experiencing whatever is experiencing relative to something else. The second answer is just plain wrong. The third answer is just a constant, and doesn't relate to experiencing anything. And the fourth answer is a force between two objects, and it has no second comparison. The first answer is how a subject experiences two different things.
Answer:
1/f = 1/D' + 1/D
The magnification equation relates the ratio of the image distance and object distance to the ratio of the image height (h^i) and object height (h^o). The magnification equation is stated as follows:
M= H^i/H^o = D^i/D^o
-- The string is 1 m long. That's the radius of the circle that the mass is
traveling in. The circumference of the circle is (π) x (2R) = 2π meters .
-- The speed of the mass is (2π meters) / (0.25 sec) = 8π m/s .
-- Centripetal acceleration is V²/R = (8π m/s)² / (1 m) = 64π^2 m/s²
-- Force = (mass) x (acceleration) = (1kg) x (64π^2 m/s²) =
64π^2 kg-m/s² = 64π^2 N = about <span>631.7 N .
</span>That's it. It takes roughly a 142-pound pull on the string to keep
1 kilogram revolving at a 1-meter radius 4 times a second !<span>
</span>If you eased up on the string, the kilogram could keep revolving
in the same circle, but not as fast.
You also need to be very careful with this experiment, and use a string
that can hold up to a couple hundred pounds of tension without snapping.
If you've got that thing spinning at 4 times per second and the string breaks,
you've suddenly got a wild kilogram flying away from the circle in a straight
line, at 8π meters per second ... about 56 miles per hour ! This could definitely
be hazardous to the health of anybody who's been watching you and wondering
what you're doing.