<h2>
Distance traveled in 1 second after drop is 4.9 m</h2><h2>
Distance traveled in 4 seconds after drop is 78.4 m</h2>
Explanation:
We have s = ut + 0.5at²
For a free falling object initial velocity u = 0 m/s and acceleration due to gravity, g = 9.8 m/s²
Substituting
s = 0 x t + 0.5 x 9.8 x t²
s = 4.9t²
We need to find distance traveled in 1 s and 4 s
Distance traveled in 1 second
s = 4.9 x 1² = 4.9 m
Distance traveled in 4 seconds
s = 4.9 x 4² = 78.4 m
Distance traveled in 1 second after drop = 4.9 m
Distance traveled in 4 seconds after drop = 78.4 m
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
v=20m/S
p=-37.5kPa
Explanation:
Hello! This exercise should be resolved in the next two steps
1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed
Q=VA
for he exitt
Q=flow=5m^3/s
A=area=0.25m^2
V=Speed
solving for V

velocity at the exit=20m/s
for entry

2.
To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

where
P=presure
α=9.810KN/m^3 specific weight for water
V=speed
g=gravity
solving for P1

the pressure at exit is -37.5kPa
Answer:
22.5J
Explanation:
Here the force is given. Also, the displacement is given as 30cm.
First we should check if all the values are in their standard form.
Here 30cm should be converted to metre by dividing it with 100.
Which would give us 0.3m
Now we use the equation W=force x displacement =75 x 0.3=22.5J
I hope this satisfies you. If u have any further questions please let me know.
I hope u will follow me and make this the brainliest answer.
Acceleration is F/M so the answer would be 12m/s^2