"increments of 8" means the major divisions are 0,8,16,24 ?
<span>x axis, calculate the moment arms from 0 </span>
<span>3x4, 2x12, 1x20 </span>
<span>from an arbitrary C </span>
<span>3(c-4) + 2(c-12) + (c-20) = 0 </span>
<span>3c - 12 + 2c -24 + c - 20 = 0 </span>
<span>6c = 56 </span>
<span>c = 9.33 </span>
<span>y axis </span>
<span>3x3, 1x12, 2x20 </span>
<span>3(c-4) + 1(c-12) +2 (c-20) = 0 </span>
<span>3c - 12 + c - 12 + 2c - 40 = 0 </span>
<span>6c = 64 </span>
<span>c = 10.67 </span>
<span>so center is x = 9.33, y = 10.67 </span>
Answer:
The average induced emf is 29.06 V
Explanation:
Given;
radius of the circular loop, r = 12.0 cm = 0.12 m
magnetic field strength, B = 1.8 T
time interval = 2.8 ms = 0.0028 s
Area of the circular loop, A = πr² = π (0.12)² = 0.0452 m²

where;
B is magnetic field
A is area
t is time
substitute the values given in the above equation to calculate the average emf that will be induced in the wire loop during the extraction process.

Therefore, the average induced emf is 29.06 V
If the element's atomic mass is accurate enough you should be able to tell from that , however if it isn't you would most likely want the number of neutrons or electrons contained by the atom.
<span>One end of a uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle, theta, with the stick. The coefficient of static friction between the end of the meter stick and the wall is 0.390. A. what is the maximum value...</span>
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.