Answer:
50 cm is equivalent to 19,6850393701 inches.
Explanation:
A meter has 100 centimeters. 100 millimeters make one centimeter. The centimeter can be written as cm. While calculating the surface area of an object, the unit of measurement becomes cm2.
Answer:
Increases
Explanation:
Since power P=IV
Then it means when current increases, the power increases hence brightness increases. I represent current, P is power and v is voltage.
Current of capacitor when in series connection is given by

where I is current across capacitor, f is frequency, C is capacitance and v is voltage across capacitance. From this second formula, it is evident that an increase in capacitance increases the current across the capacitor. Therefore, if current increases, power also increases leading to an increase in brightness
Answer:
a) Acceleration is zero
, c) Speed is cero
Explanation:
a) the equation that governs the simple harmonic motion is
x = A cos (wt +φφ)
Where A is the amplitude of the movement, w is the angular velocity and φ the initial phase determined by the initial condition
Body acceleration is
a = d²x / dt²
Let's look for the derivatives
dx / dt = - A w sin (wt + φ)
a = d²x / dt² = - A w² cos (wt + φ)
In the instant when it is not stretched x = 0
As the spring is released at maximum elongation, φ = 0
0 = A cos wt
Cos wt = 0 wt = π / 2
Acceleration is valid for this angle
a = -A w² cos π/2 = 0
Acceleration is zero
b)
c) When the spring is compressed x = A
Speed is
v = dx / dt
v = - A w sin wt
We look for time
A = A cos wt
cos wt = 1 wt = 0, π
For this time the speedy vouchers
v = -A w sin 0 = 0
Speed is cero
Answer:
404K
Explanation:
Data given, Kinetic Energy.K.E=8.37*10^-21J
Note: as the temperature of a is increase, the rate of random movement will increase, hence leading to more collision per unit time. Hence we can say that the relationship between the kinetic energy and the temperature is a direct variation.
This relationship can be expressed as

where K is a constant of value 1.38*10^-23
Hence if we substitute the values, we arrive at

converting to degree we have 
Answer:
<em>U = 66,150 J</em>
Explanation:
<u>Gravitational Potential Energy</u>
Gravitational potential energy is the energy stored in an object because of its vertical position or height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or
.
The child of mass m=45 Kg is perched above a h=150 m ravine. His gravitational potential energy is:

U = 66,150 J