1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
2 years ago
5

-1/2 divided by ? = -7/3 1/7 divided by ? = 14

Mathematics
2 answers:
FrozenT [24]2 years ago
8 0

-1/2 divided by 14/2 = -7/3

1/7 divided by 98= 14

Division means to perform the operation of division. H. Check how many times the divisor is another number. Dividing by is written as or. The result need not be an integer, but if it is an additional term is used. is read as ``divide'' and means to divide.

Partitioning is a method of dividing a group of things into equal parts. One of the four basic operations in arithmetic that produce fair results when divided. The division is the opposite of multiplication.

Learn more about  divided here

brainly.com/question/11892889

#SPJ1

STALIN [3.7K]2 years ago
7 0

Answer:

-\dfrac{1}{2} \textsf{ divided by } \boxed{\dfrac{3}{14}} = -\dfrac{7}{3}

\dfrac{1}{7} \textsf{ divided by } \boxed{\dfrac{1}{98}} = 14

Step-by-step explanation:

Let x be the unknown number.

\begin{aligned}&\textsf{Given}: \quad&\dfrac{-\frac{1}{2}}{x}&=-\dfrac{7}{3}\\\\&\textsf{Multiply both sides by $x$}: & \dfrac{-\frac{1}{2}x}{x} & = -\dfrac{7}{3}x\\\\& \textsf{Simplify}: & -\dfrac{1}{2} & = -\dfrac{7}{3}x\\\\& \textsf{Multiply both sides by 3}: & -\dfrac{1 \cdot 3}{2} & = \dfrac{-7 \cdot 3}{3}x\\\\& \textsf{Simplify}: & -\dfrac{3}{2} & = -7x\\\\& \textsf{Divide both sides by -7}: \quad & -\dfrac{3}{2 \cdot -7}& = \dfrac{-7x}{-7}\\\\& \textsf{Simplify}: &\dfrac{3}{14} & = x\end{aligned}

\textsf{Therefore, }-\dfrac{1}{2} \textsf{ divided by } \boxed{\dfrac{3}{14}} = -\dfrac{7}{3}

-------------------------------------------------------------------------------

Let x be the unknown number.

\begin{aligned}& \textsf{Given}: & \dfrac{\frac{1}{7}}{x} & = 14\\\\& \textsf{Multiply both sides by $x$}: & \dfrac{\frac{1}{7}x}{x} & = 14x\\\\& \textsf{Simplify}: & \dfrac{1}{7} & = 14x\\\\& \textsf{Divide both sides by 14}: & \dfrac{1}{7 \cdot 14} & = \dfrac{14x}{14}\\\\ & \textsf{Simplify}: & \dfrac{1}{98} & = x\end{aligned}

\textsf{Therefore, }\dfrac{1}{7} \textsf{ divided by } \boxed{\dfrac{1}{98}} = 14

You might be interested in
harry got 42 and 49 correct on his test what fraction of the marks did he get wrong give your answer in it simplest form ​
Nuetrik [128]

Answer:

1/7

Step-by-step explanation:

49-42= 7

7/49 can be simplified by dividing by 7

4 0
3 years ago
A bowl contains 7 pennies, 9 nickels, and 4 dimes. Elyse removes one coin at random from the bowl and does not replace it. She t
Vlad [161]

Answer:

The probability is 3/95

Step-by-step explanation:

Okay this is a probability without replacement question.

Firstly we calculate the total number of coins = 7 + 9 + 4 = 20 coins

The probability that the first coin will be a dimes = number of dimes/total number of coins = 4/20 = 1/5

Now she removes a coin without replacement, if it was a dime, total number of coins becomes 19 and the total number of dimes becomes 3; Thus the probability of the second coins being a dimes = 3/19

Thus, the probability of both coins being dimes = probability of first coin being dimes * probability of second coins being dimes

= 1/5 * 3/19 = 3/95

6 0
3 years ago
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
What is -29.9 - 4.6?<br> O A. -6,5<br> B. 65<br> C. 0.65<br> D. -65
natulia [17]
-6.5 which in your answer choices is a
7 0
3 years ago
Write me What is 10/12 using simplest form
Serjik [45]
Found it online hope that’s helps

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is the area of a quadrilateral with vertices at (-4,2),(1,2),(1,-3) and (-4,-3)
    5·1 answer
  • I need to understand proofs
    11·1 answer
  • Find the quotient of the quantity negative 40 times x to the 3rd power minus 12 times x to the 2nd power plus 16 times x all ove
    14·2 answers
  • The slope of the line below is - Write a point-slope equation of the line
    8·1 answer
  • Which amounts of materials satisfy the relationship?
    5·2 answers
  • NEED HELP WITH THIS please
    9·2 answers
  • Help pleasee! i have to turn this in soon
    10·1 answer
  • HELPPP i'll mARK BRAINLIESTT PLZ HELPPPP,, kfibirbig5
    14·1 answer
  • 12 rolls of paper towels cost $5.00, while 3 rolls cost $2.00. (Assume the rolls are the same size / have the same number of she
    13·1 answer
  • Susie is saving for a new pair of trainers. Every week, she saves £5 of her pocket money
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!