The loss of electron from an results in the formation of cation represented by the positive charge on the element whereas gaining of electron results in the formation of anion represented by the negative charge on the element.
The alkali earth metal beryllium (
) belongs to the second group of the periodic table. The ground state electronic configuration of
is:
From the electronic configuration it is clear that it has 2 valence electrons in its valence shell (
).
After losing all valence electrons that is 2 electrons from
orbital. The electronic configuration will be:

Since, lose of electron is represented by positive charge on the element symbol. So, the beryllium will have +2 charge on its symbol as
.
Hence, beryllium will have 2+ charge on it after losing all its valence electrons in the chemical reaction.
Answer:
Single Displacement reaction
In a displacement reaction, a more reactive element replaces a less reactive element from a compound.
Change in colour takes place with no precipitate forms.
Metals react with the salt solution of another metal.
Examples:
2KI + Cl2 → 2KCl + I2
CuSO4 + Zn → ZnSO4 + Cu
Double displacement reaction
In a double displacement reaction, two atoms or a group of atoms switch places to form new compounds.
Precipitate is formed.
Salt solutions of two different metals react with each other.
Examples:
Na2SO4 + BaCl2 → BaSO4 + 2NaCl
2KBr + BaCl2 → 2KCl + BaBr2
Hope this helps...Please Mark as Brainliest!!
Answer:
RbOH
Explanation:
For this question, we have to remember what is the definition of a base. A base is a compound that has the <u>ability to produce hydroxyl ions</u>
, so:

With this in mind we can write the <u>reaction for each substance:</u>




The only compound that fits with the definition is
, so this is our <u>base</u>.
I hope it helps!
Since they can still be unstable...nuetral atoms have the same amount of protons to electrons but to be stable they need to fill up there outer shell by gaining or losing electrons
Answer:
Magnesium is a naturally ubiquitous; (appearing & found evrywhere) element and has three naturally occurring stable isotopes, 24Mg, 25Mg and 26Mg, with relative abundance of 78.99%, 10.00% and 11.01%, respectively.
However, they differ only because a 24Mg atom has 12 neutrons in its nucleus, a 25Mg atom has 13 neutrons, and a 26Mg has 14 neutrons.
Explanation: