Number of atoms : 1.26 x 10²³
<h3>Further explanation </h3>
The mole is the number of particles(molecules, atoms, ions) contained in a substance
1 mol = 6.02.10²³ particles
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
0.21 moles of Al, so n = 0.21
Number of atoms :

Capture all of the smoke and weight it. it will weigh exactly the same before and after you burn it but will just be CO2 and H2O gas.
The answer is Three
!!!!!!
Answer: The osmotic pressure of a solution is 53.05 atm
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = ?
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (methanol) = 22.3 g
Volume of solution = 321 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:


Hence, the osmotic pressure of a solution is 53.05 atm
The question is missing the data sets.
This is the complete question:
A single penny has a mass of 2.5 g. Abbie and James
each measure the mass of a penny multiple times. Which statement about
these data sets is true?
O Abbie's measurements are both more accurate
and more precise than James'.
O Abbie's measurements are more accurate,
but less precise, than James'.
O Abbie's measurements are more precise,
but less accurate, than James'.
O Abbie’s measurements are both less
accurate and less precise than James'.
Penny masses (g)
Abbie’s data
2.5, 2.4, 2.3, 2.4, 2.5, 2.6, 2.6
James’ data
2.4, 3.0, 3.3, 2.2, 2.9, 3.8, 2.9
Answer: first option, Abbie's measurements are both more accurate
and more precise than James'.
Explanation:
1) To answer this question, you first must understand the difference between precision and accuracy.
<span>Accuracy is how close the data are to the true or accepted value.
</span>
<span>Precision is how close are the data among them, this is the reproducibility of the values.</span>
Then, you can measure the accuracy by comparing the means (averages) with the actual mass of a penny 2.5 g.
And you measure the precision by comparing a measure of spread, as it can be the standard deviation.
2) These are the calculations:
Abbie’s data
Average: ∑ of the values / number of values
Average = [2.5 + 2.4 + 2.3 + 2.4 + 2.5 + 2.6 + 2.6 ] / 7 = 2.47 ≈ 2.5
Standard deviation: √ [ ∑ (x - mean)² / (n - 1) ] = 0.11
James’ data
Average = [2.4 + 3.0 + 3.3 + 2.2 + 2.9 + 3.8 + 2.9] / 7 = 2.56 ≈ 2.6
Standard deviation = 0.53
3) Conclusions:
1) The average of Abbie's data are closer to the accepted value 2.5g, so they are more accurate.
2) The standard deviation of Abbie's data is smaller than that of Jame's data, so the Abbie's data are more precise.