Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
Answer: Krypton
Explanation:
7(14)=84
Krypton, if you look at the periodic table, has an atomic mass of approximately 84. It has a large nucleus, so while it is stable (due to its full octet) the nucleus is probably unstable due to repulsive forces between protons in the nucleus so is probably radioactive.
Answer:
The answer to the question is
The wave speed is 53.57 cm/s
Explanation:
The speed of a wave is the distance covered by the wave per unit time.
Wave speed is given by
v = f×λ
where v = The velocity of the wave
f = The wave frequency
λ = The wavelength of the wave
the speed v of the wave can also be expressed interms of the period as
v = λ/T
The freuency of the given wave is f = 5/(0.112 s) = 44.64 Hz and the wavelength is λ = 1.20 cm
Therefore the speed of the wave = 44.64 Hz × 1.20 cm = 53.57 cm/s
Answer:
An atom changes from a ground state to an excited state by taking on energy from its surroundings in a process called absorption. The electron absorbs the energy and jumps to a higher energy level. In the reverse process, emission, the electron returns to the ground state by releasing the extra energy it absorbed.