Answer:
CH4 + 2 O2 --> CO2 + 2 H2O
Explanation:
CH4 + 2 O2 --> CO2 + 2 H2O is the only reaction where an element (oxygen) undergoes a change in oxidation state. In this reaction oxygen changes disproportionately to O⁻². That is ...
O₂ → CO₂ + 4e⁻ ==> oxidation
<u>O₂ + 4e⁻ → H₂O ==> reduction </u>
2O₂ + 4e⁻ → CO₂ + H₂O + 4e⁻ ==> Net oxidation-reduction
=> 4e⁻ gained by one mole O₂ in formation of CO₂ = 4e⁻ lost by the other mole O₂ in forming H₂O.
Then...
Including CH₄ (whose elements do not undergo changes in oxidation states) requires doubling reaction to balance by mass thus giving ...
2CH₄ + 2O₂ + 8e⁻ → 2CO₂ + 2H₂O + 8e⁻
Cancelling 8 reduction electrons on left with 8 oxidation electrons on right gives...
2CH₄ + 2O₂ → 2CO₂ + 2H₂O
Answer:
Chemistry is a branch of science that involves the study of the composition, structure and properties of matter. Often known as the central science, it is a creative discipline chiefly concerned with atomic and molecular structure and its change, for instance through chemical reactions.Explanation:Chemistry is a branch of science that involves the study of the composition, structure and properties of matter. Often known as the central science, it is a creative discipline chiefly concerned with atomic and molecular structure and its change, for instance through chemical reactions.
When we have the balanced reaction equation is:
H2(g) + CO2(g) ↔ H2O(g) + CO (g)
a) first, to calculate ΔG° for the reaction:
we will use this formula:
ΔG° = -RT㏑Kp
when R is R- rydberg constant = 8.314J/mol.K
and T is the temperature in Kelvin = 2000 K
and Kp = 4.4
so, by substitution:
ΔG° = - 8.314 *2000 *㏑4.4
= - 24624 J/mol = - 24.6 KJ/mol
b) to calculate ΔG so, we will use this formula:
ΔG = ΔG° + RT㏑Qp
So we need first, to get Qp from the reaction equation:
when Qp = P products / P reactants
= PH2O*PCO / PH2 * PCO2
= (0.66 atm * 1.2 atm) / (0.25 * 0.78)
= 4.1
so by substitution:
ΔG = -24624 + 8.314*2000*㏑4.1
= -1162 J/mol = - 1.16 KJ/mol
Answer:
The coefficients in order are 2, 1, 1
Explanation:
Each side of the reaction needs to have the same number of each element due to conservation of matter.
First I looked at what was uneven, notice there are 2 Na on the left side and 4 Na on the left. The easiest way to fix that is to add a 2 on the Na2HPO4:
2(Na2HPO4)--> Na4P2O7 + H2O
Next take count of each element on both sides to see if the 2 balanced everything:
On the left there are 4 Na, 2 H, 2 P, and 8 O
On the right there are 4 Na, 2 H, 2 P, and 8 O
Since both sides match, you are done!
The answer is D or 4,3,2!