1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
1 year ago
8

Over the time interval after a difference in potential is applied between the ends of a wire, what would happen to the drift vel

ocity of the electrons in a wire and to the current in the wire if the electrons could move freely without resistance through the wire?
Physics
1 answer:
Dmitrij [34]1 year ago
5 0

The the drift velocity of the electrons is determined by atom vibrations in the crystal lattice.

<h3>How to explain the information?</h3>

Assume we could increase the average time between collisions in a typical metal to get to a limit of zero resistance. The free electrons would therefore be continuously accelerated by a constant applied voltage, according to the classical paradigm of conduction. Both the current and the drift speed would gradually pick up over time.

Although it is not the scenario implied by the question, it is possible to switch to zero resistance by using a superconducting wire instead of the usual metal. In this scenario, the maximum current is constrained, the drift velocity of the electrons is determined by atom vibrations in the crystal lattice, and it is difficult to produce a potential difference across the superconductor.

Learn more about electrons in:

brainly.com/question/860094

#SPJ4

You might be interested in
A rocket accelerates by burning its onboard fuel, so its mass decreases with time. Suppose the initial mass of the rocket at lif
Serggg [28]

Answer:

Height of the rocket be one minute after liftoff is 40.1382 km.

Explanation:

v(t)=-gt-v_e\times \ln \frac{m-rt}{m}

v = velocity of rocket at time t

g = Acceleration due to gravity =9.8 m/s^2

v_e = Constant velocity relative to the rocket = 2,900m/s.

m = Initial mass of the rocket at liftoff = 29000 kg

r = Rate at which fuel is consumed = 170 kg/s

Velocity of the rocket after 1 minute of the liftoff =v

t = 1 minute = 60 seconds'

Substituting all the given values in in the given equation:

v(60)=-9.8 m/s^2\times 60 s-2,900m/s\times \ln (\frac{29,000 kg-170 kg/s\times 60 s}{2,9000 kg})

v(60) = 668.97 m/s

Height of the rocket = h

Velocity=\frac{Displacement}{time}

668.97 m/s=\frac{h}{60 s}

h=668.97 m/s\times 60 s=40,138.2 m = 40.1382 km

Height of the rocket be one minute after liftoff is 40.1382 km.

4 0
3 years ago
A sports car is advertised to be able to stop in a distance of 50.0 m from a speed of 80 km. What is its acceleration and how ma
Flauer [41]

Explanation:

Given that,

Initial speed of the sports car, u = 80 km/h = 22.22 m/s

Final speed of the runner, v = 0

Distance covered by the sports car, d = 80 km = 80000 m

Let a is the acceleration of the sports car.  It can be calculated using third equation of motion as :

v^2-u^2=2ad

a=\dfrac{v^2-u^2}{2d}

a=\dfrac{0-(22.22)^2}{2\times 80000}

a=-0.00308\ m/s^2

Value of g, g=9.8\ m/s^2

a=\dfrac{-0.00308}{9.8}\ m/s^2

a=(-0.000314)\ g\ m/s^2

Hence, this is required solution.

8 0
3 years ago
An insulated beaker with negligible mass contains 0.250 kg of water at 75.0C. How many kilograms of ice at -20.0C must be droppe
kkurt [141]

Answer:

The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg

Explanation:

Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water

Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C

To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.

Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C

Latent heat of ice = L = 334000 J/kg

Specific heat capacity of water = C = 4186 J/kg.°C

Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m

Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J

543600 m = 36627.5

m = 0.0674 kg = 67.4 g of ice.

3 0
3 years ago
3. What do we call the ONLY part of the electromagnetic spectrum that we can
otez555 [7]

Answer:

Visible Light

wavelength = 4000 - 7000 Angstroms = 400 - 700 milli-microns

1 A unit =  10^-10 m

1 mμ = 10^-9 m

6 0
2 years ago
1 (3 points)
trapecia [35]

Answer:

300

Explanation:

15x20

5 0
4 years ago
Other questions:
  • A 0.1 kg bouncy ball moves toward a brick wall with a speed of 11 m/s. After colliding with the wall, the ball travels at a spee
    7·1 answer
  • HELP PLEASE 100 POINTS!
    9·2 answers
  • A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 n of lift per square meter of wing.
    8·1 answer
  • How are loudness and intensity related to the amplitude and energy of a sound wave? What is the unit of intensity?
    6·1 answer
  • If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the fr
    5·1 answer
  • ((Bruv pls hurry on test)) Radioisotopes often emit alpha particles, beta particles, or gamma rays. The distance they travel thr
    8·2 answers
  • Check the photo and try me help​
    11·1 answer
  • Sugar dissolved in water is an example of?
    9·2 answers
  • A 5000 kg truck runs into a 0.5 kg mosquito. Which of the following should not be the same for both?
    11·1 answer
  • How many joules are in 3.5kJ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!