Answer: The passage of a light wave can cause electrically charged particles to move up and down.
Explanation:
Electromagnetic waves are transversal waves, they are a combination of oscillating electric and magnetic fields, which propagate through space carrying energy from one place to another.
This means the oscillation of the wave occurs in the transversal direction to its propagation. In addition, electromagnetic waves are spread thanks to the electromagnetic fields produced by moving electric charges.
ANSWER
8.99 F
EXPLANATION
We know that two capacitors of capacitances 2.8 F and 5.57 F are connected in series, while a third capacitor of capacitance 7.13 F is connected in parallel to that combination,
The capacitance works similarly to the resistance, except that when capacitors are connected in parallel, their capacitances add up, while when they are connected in series, the equivalent capacitance is like we were finding the equivalent resistance of resistors connected in parallel,

Hence, the total capacitance is 8.99 F, rounded to the nearest hundredth.
a) See free-body diagram in attachment
b) The acceleration is 
Explanation:
a)
The free-body diagram of an object is a diagram representing all the forces acting on the object. Each force is represented by a vector of length proportional to the magnitude of the force, pointing in the same direction as the force.
The free-body diagram for this object is shown in the figure in attachment.
There are three forces acting on the object:
- The weight of the object, labelled as
(where m is the mass of the object and g is the acceleration of gravity), acting downward - The applied force,
, acting up along the plane - The force of friction,
, acting down along the plane
b)
In order to find the acceleration of the object, we need to write the equation of the forces acting along the direction parallel to the incline. We have:

where:
is the applied force, pushing forward
is the frictional force, acting backward
is the component of the weight parallel to the incline, acting backward, where
m = 2 kg is the mass of the object
is the acceleration of gravity
is the angle between the horizontal and the incline (it is not given in the problem, so I assumed this value)
a is the acceleration
Solving for a, we find:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
Answer:
The net acceleration of the boat is approximately 6.12 m/s² downwards
Explanation:
The buoyant or lifting force applied to the boat = 790 N
The mass of the boat lifted by the buoyant force = 214 kg
The force applied to a body is defined as the product of the mass and the acceleration of the body. Therefore, the buoyant force, F, acting on the boat can be presented as follows;
Fₐ = F - W
The weight of the boat = 214 × 9.81 = 2099.34 N
Therefore;
Fₐ = 790 - 2099.34 = -1309.34 N
Fₐ = Mass of the boat × The acceleration of the boat
Given that the buoyant force, Fₐ, is the net force acting on the boat, we have;
F = Mass of the boat × The net acceleration of the boat
F = -1309.34 N = 214 kg × The net acceleration of the boat
∴ The net acceleration of the boat = -1309.34 N/(214 kg) ≈ -6.12 m/s²
The net acceleration of the boat ≈ 6.12 m/s² downwards