The centripetal force acting on the space shuttle as it orbits Earth is equal to the shuttles momentum
        
             
        
        
        
Answer:
-1.43 m/s relative to the shore
Explanation:
Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:
 
where  are the mass of the swimmer and raft, respectively.
 are the mass of the swimmer and raft, respectively.  are the velocities of the swimmer and the raft after the run, respectively. We can solve for
 are the velocities of the swimmer and the raft after the run, respectively. We can solve for  
 
 
So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore
 
        
             
        
        
        
Explanation:
When m=<em>mass</em>
 G=<em>a</em><em>c</em><em>c</em><em>e</em><em>l</em><em>e</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>d</em><em>u</em><em>e</em><em> </em><em>t</em><em>o</em><em> </em><em>gravity</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>H</em><em>=</em><em>h</em><em>e</em><em>i</em><em>g</em><em>h</em><em>t</em>
<em>U</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em>u</em><em>l</em><em>a</em>
<em>M</em><em>g</em><em>h</em>
<em>(</em><em>M</em><em>=</em><em>6</em><em>, </em><em>g</em><em>=</em><em>10</em><em>,</em><em>h</em><em>=</em><em>?</em><em>) </em>
6×10×h
=60joules
 
        
             
        
        
        
Answer:
he can explore other types of physical activity
Explanation:
lifting weights and paddling will help but running could also help
 
        
                    
             
        
        
        
Answer:
the answer for the question is the last option