1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-14-01-66 [18.8K]
3 years ago
8

Regan has an empty glass cup. It has a mass of 0.3 kg. She drops the cup on the ground and it shatters into several pieces. If s

he collected all of the pieces of the cup, how much mass would all of the pieces have combined?
Chemistry
1 answer:
Alex73 [517]3 years ago
4 0
10 kgsince when uultiply
You might be interested in
Explain how the igneous rock granite forms. Then tell how the granite might become the sedimentary rock sandstone and then the m
otez555 [7]

Answer:

There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle. Sedimentary Rocks Sedimentary rocks are formed from pieces of other existing rock or organic material. There are three different types of sedimentary rocks: clastic, organic (biological), and chemical. Clastic sedimentary rocks, like sandstone, form from clasts, or pieces of other rock. Organic sedimentary rocks, like coal, form from hard, biological materials like plants, shells, and bones that are compressed into rock. The formation of clastic and organic rocks begins with the weathering, or breaking down, of the exposed rock into small fragments. Through the process of erosion, these fragments are removed from their source and transported by wind, water, ice, or biological activity to a new location. Once the sediment settles somewhere, and enough of it collects, the lowest layers become compacted so tightly that they form solid rock. Chemical sedimentary rocks, like limestone, halite, and flint, form from chemical precipitation. A chemical precipitate is a chemical compound—for instance, calcium carbonate, salt, and silica—that forms when the solution it is dissolved in, usually water, evaporates and leaves the compound behind. This occurs as water travels through Earth’s crust, weathering the rock and dissolving some of its minerals, transporting it elsewhere. These dissolved minerals are precipitated when the water evaporates. Metamorphic Rocks Metamorphic rocks are rocks that have been changed from their original form by immense heat or pressure. Metamorphic rocks have two classes: foliated and nonfoliated. When a rock with flat or elongated minerals is put under immense pressure, the minerals line up in layers, creating foliation. Foliation is the aligning of elongated or platy minerals, like hornblende or mica, perpendicular to the direction of pressure that is applied. An example of this transformation can be seen with granite, an igneous rock. Granite contains long and platy minerals that are not initially aligned, but when enough pressure is added, those minerals shift to all point in the same direction while getting squeezed into flat sheets. When granite undergoes this process, like at a tectonic plate boundary, it turns into gneiss (pronounced “nice”). Nonfoliated rocks are formed the same way, but they do not contain the minerals that tend to line up under pressure and thus do not have the layered appearance of foliated rocks. Sedimentary rocks like bituminous coal, limestone, and sandstone, given enough heat and pressure, can turn into nonfoliated metamorphic rocks like anthracite coal, marble, and quartzite. Nonfoliated rocks can also form by metamorphism, which happens when magma comes in contact with the surrounding rock. Igneous Rocks Igneous rocks (derived from the Latin word for fire) are formed when molten hot material cools and solidifies. Igneous rocks can also be made a couple of different ways. When they are formed inside of the earth, they are called intrusive, or plutonic, igneous rocks. If they are formed outside or on top of Earth’s crust, they are called extrusive, or volcanic, igneous rocks. Granite and diorite are examples of common intrusive rocks. They have a coarse texture with large mineral grains, indicating that they spent thousands or millions of years cooling down inside the earth, a time course that allowed large mineral crystals to grow.

Alternatively, rocks like basalt and obsidian have very small grains and a relatively fine texture. This happens because when magma erupts into lava, it cools more quickly than it would if it stayed inside the earth, giving crystals less time to form. Obsidian cools into volcanic glass so quickly when ejected that the grains are impossible to see with the naked eye. Extrusive igneous rocks can also have a vesicular, or “holey” texture. This happens when the ejected magma still has gases inside of it so when it cools, the gas bubbles are trapped and end up giving the rock a bubbly texture. An example of this would be pumice.

Explanation:

oh and also nice profile pic :P

5 0
3 years ago
Please explain to me how to answer no.2 questions
bulgar [2K]

Answer: -

IE 1 for X = 801

Here X is told to be in the third period.

So n = 3 for X.

For 1st ionization energy the expression is

IE1 = 13.6 x Z ^2 / n^2

Where Z =atomic number.

Thus Z =( n^2 x IE 1 / 13.6)^(1/2)

Z = ( 3^2 x 801 / 13.6 )^ (1/2)

= 23

Number of electrons = Z = 23

Nearest noble gas = Argon

Argon atomic number = 18

Number of extra electrons = 23 – 18 = 5

a) Electronic Configuration= [Ar] 3d34s2

We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.

So more the first ionization energy, less is the atomic radius.

X has more IE1 than Y.

b) So the atomic radius of X is lesser than that of Y.

c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom.

Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.

4 0
3 years ago
The number of electrons in a neutral atom is equal to the number of protons? True or false
NNADVOKAT [17]

Answer:

true

Explanation:

in order for the atom to be neutral the number of protons and electrons have to be the same.

3 0
2 years ago
The element that can act like a metal when it is under tremendous pressure and is probably responsible for Jupiter and Saturn's
erastova [34]

Answer:

1. Hydrogen

Explanation:

These planets contain liquid hydrogen in their interior, while the earth has liquid iron in it.

When liquid hydrogen is in tremendous pressure enviroments, the electrons  that make up each atom of this element end up "jumping" to other atoms. These "jumps" allow liquid hydrogen to behave like a metal.

In addition, with the constant energy released by the nucleus of planets like Jupiter and Saturn, as well as their rotations, the liquid hydrogen receives induction of currents, giving rise to extremely powerful magnetic fields.

3 0
3 years ago
The symbol of an element is represented by (a) Calculate the number of neutrons in the atom of X. [1mark] (b) State the number o
aliina [53]

Answer:

The question is incomplete.

A sample question and solution is given below.

Check the attachment for explanation.

Explanation:

Check the attachment below

3 0
3 years ago
Other questions:
  • What is the electronegativity difference in the compound aluminum chloride, alcl3?
    6·1 answer
  • PH for the solution which contain CO​
    7·1 answer
  • Where is almost all the mass of an atom​
    6·1 answer
  • The most active metals on the periodic table are found on the: lower left upper right middle upper left lower right
    5·2 answers
  • 1) What is the formula for calculating weight
    15·1 answer
  • Wht kind of particles contribute to an overall heating effect on climate?​
    8·2 answers
  • HELPPPPPPPPPPPPOOOooooooo
    6·1 answer
  • Which of the following statements best describes why electrons
    5·1 answer
  • Fact check this please
    9·2 answers
  • Which term describes a change in velocity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!