121.75 is really really really really really the right answer... For real
Answer:
28.20 mL of the stock solution.
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 12.1 M
Volume of diluted solution (V2) = 350.0 mL
Molarity of diluted solution (M2) = 0.975 M
Volume of stock solution needed (V1) =..?
The volume of stock solution needed can be obtained by using the dilution formula as shown below:
M1V1 = M2V2
12.1 x V1 = 0.975 x 350
Divide both side by 12.1
V1 = (0.975 x 350)/12.1
V1 = 28.20 mL.
Therefore, 28.20 mL of the stock solution will be needed to prepare 350.0 mL of 0.975 M HCl solution.
<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>
Answer:
A budget is an estimation of revenue and expenses over a specified future period of time and is usually compiled and re-evaluated on a periodic basis. Budgets can be made for a person, a group of people, a business, a government, or just about anything else that makes and spends money.
Answer:
<em>the </em><em>two </em><em>elements</em><em> </em><em>are </em><em>in </em><em>the</em><em> same</em><em> </em><em>period</em><em>,</em><em> with</em><em> </em><em>element </em><em>R </em><em>the </em><em>first</em><em> </em><em>element</em><em> </em><em>in </em><em>the</em><em> </em><em>period</em><em> </em><em>and </em><em>element </em><em>Q </em><em>the </em><em>last</em><em> </em><em>element</em>