Answer: A sea of electrons
Explanation:
48.3 g AgNO3 / 169.9 g/mol = 0.284 moles AgNO3
0.284 mol AgNO3 X (1 mol Ag2CrO4/2 mol AgNO3) = 0.142 mol Ag2CrO4
0.142 mol Ag2CrO4 X 331.7 g/mol = 47.1 g Ag2CrO4
Adding (S2O3)2- would affect the reaction mechanism that involves this ion. From the reaction mechanism given above, the equilibrium of step 2 would be affected. Adding the stock solution of (S2O3)2- would shift the equilibrium to the right thus making more products of the said mechanism. Also, the reaction rate of this step would occur faster than the original rate. This is based on Le Chatelier's Prinicple which states that a corresponding change would happen to the equilibrium of a reaction when pressure, concentration of the substances or temperature is changed. So, that after the addition, a color change would appear immediately because I3- would be removed slowly from solution, and would therefore be able to react with starch.
The formation of nitric acid from nitrogen, hydrogen, and oxygen can be written as,
N₂ + H₂ + 3O₂ --> 2HNO₃
The net enthalpy of formation of nitric acid is calculated by,
Hrxn = Hproduct - Hreactant
Since all the reactants are in their elemental forms, the simplified equation would be,
Hrxn = Hproduct
Substituting,
Hrxn = (-186.81 kJ/mol)(2 mols)
<em>Answer: -372.42 kJ</em>
Velocity is said to be constant if its magnitude as well direction at any instant is remains the same. In D, if you draw a line parallel to y-axis at any time t, you can see that velocity is same. Hence, D is the correct graph.
The kinetic energy of gaseous molecules is greater than that of liquid molecules. Therefore, in gas, kinetic energy overcomes the force of attraction between molecules. In short, in gas phase, particles move at high speed and hence they have less force of attraction. In case of liquid phase, particles are close enough as a result there is much more force of attraction compared to gaseous molecules. In liquid state, kinetic energy cannot overcome force of attraction therefore, liquid molecules slow down.
Therefore, B is the correct answer.