Answer:
Beryllium bromide
Explanation:
There exists 2 elements in the question
Beryllium Be with valence of +2, and it's a metal
Bromine Br with a valence of -1, and is a non - metal.
Both of them combine together forming an ionic bond:
Be + Br(2) -> BeBr(2)
In naming the compound, we would say that since the first is a metal, beryllium, and the second being a halogen, bromine. We name it by calling the first name together with the last name and changing the last name of the non metal from -ine to -ide.
So we have, Beryllium Bromide.
Answer:
When a bridge is used for long time It lises its elastic .Therefore ,the amount of strain in the bridge for a given stress will become large and ultimately, the bridge may collapse .This is why the bridge are declared unsafe after a long time.
Explanation:
Answer:
speed of eight ball speed after the collision is 3.27 m/s
Explanation:
given data
initially moving v1i = 3.4 m/s
final speed is v1f = 0.94 m/s
angle = θ w.r.t. original line of motion
solution
we assume elastic collision
so here using conservation of energy
initial kinetic energy = final kinetic energy .............1
before collision kinetic energy = 0.5 × m× (v1i)²
and
after collision kinetic energy = 0.5 × m× (v1f)² + 0.5 × m× (v2f)²
put in equation 1
0.5 × m× (v1i)² = 0.5 × m× (v1f)² + 0.5 × m× (v2f)²
(v2f)² = (v1i)² - (v1f)²
(v2f)² = 3.4² - 0.94²
(v2f)² = 10.68
taking the square root both
v2f = 3.27 m/s
speed of eight ball speed after the collision is 3.27 m/s
Answer:
a) x = 660 m
, b) λ = 0.330 m
, c) precision is 0.1 cm
, d) Δf= n Δt/ t²
Explanation:
a) the speed of sound is constant, therefore we can use the relation of motion to inform the distance that the sound extends is
v = x / t
x = v t
x = 330 2
x = 660 m
b) the speed of sound is
v = λ f
λ = v / f
λ = 330/1000
λ = 0.330 m
c) a measuring tape must be used to measure the wavelength, the precision is 0.1 cm
.d) frequency measurement is more delicate, a stopwatch should be used to measure a certain number of oscillations, and hence calculate the frequency
.f = n / t
Therefore, if we assume that there is no error in the number of oscillations, the pressure is given by the appreciation of the stopwatch, which is maximum 0.01 s
Δf / f = Δt / t
Δf = Δt /t f
Δf= n Δt/ t²
Answer:
v₂ = 48 mph
Explanation:
We know that,
Speed = distance/time
A German Shepherd takes 4 hours to cover a distance, if it travels at a speed of 36mph.
We need to find the speed to cover the same distance in 3 hours.

So, the new speed is 48 mph.