Answer:
F₁ = 4.29 x 10⁵ N
Explanation:
The total force required to move the freight train with the given acceleration is given by the following formula:
F = ma + f
where,
F = Total Force Required from both engines = ?
m = equivalent mass of system = 2(8 x 10⁵ kg) + 5.5 x 10⁵ kg = 21.5 x 10⁵ kg
a = required acceleration = 5 x 10⁻² m/s²
f = force of friction = 7.5 x 10⁵ N
Therefore,
F = (21.5 x 10⁵ kg)(0.05 m/s²) + 7.5 x 10⁵ N
F = 8.575 x 10⁵ N
Now, for identical forces in each engine can be given as:
Force exerted by each engine = F₁ = F/2
F₁ = 8.575 x 10⁵ N/2
<u>F₁ = 4.29 x 10⁵ N</u>
Electrical > light,sound and thermal
Answer:
Explanation:
BAHAHAHAH karely omg HAHAHA un idke
In electrical circuit, this arrangement is called a R-L series circuit. It is a circuit containing elements of an inductor (L) and a resistor (R). Inductance is expressed in units of Henry while resistance is expressed in units of ohms. The relationship between these values is called the impedance, denoted as Z. Its equation is
Z = √(R^2 + L^2)
Z = √((1.24×10^3 ohms)^2 + (6.95×10^-6 H)^2)
Z = 1,240 ohms
The unit for impedance is also ohms. Since the circuit is in series, the voltage across the inductor and the resistor are additive which is equal to 12 V. Knowing the impedance and the voltage, we can determine the maximum current.
I = V/Z=12/1,240 = 9.68 mA
But since we only want to reach 73.6% of its value, I = 9.68*0.736 = 7.12 mA. Then, the equation for R-L circuits is

, where τ = L/R = 6.95×10^-6/1.24×10^3 = 5.6 x 10^-9
Then,
t = 7.45 nanosecondsPart B.) If t = 1.00τ, then t/τ = 1. Therefore,
I = 6.12 mA