The wavenumber and (b) the wavelength of the radiation used by an fm radio transmitter broadcasting at 92. 0 mhz will be 31.25 *
and 0.032 *
m respectively
Forms of electromagnetic radiation like radio waves, light waves or infrared (heat) waves make characteristic patterns as they travel through space. Each wave has a certain shape and length. The distance between peaks (high points) is called wavelength.
Wavenumber, also called wave number, a unit of frequency, often used in atomic, molecular, and nuclear spectroscopy, equal to the true frequency divided by the speed of the wave and thus equal to the number of waves in a unit distance.
wavelength = ?
frequency = 92 m Hz = 92 *
Hz
speed of light = 3 *
m/s
speed of light = frequency * wavelength
wavelength = speed of light / frequency
= 3 *
/ 92 *
= 0.032 *
m
wavenumber = 1 / wavelength
= 1 / 0.032 *
m
= 31.25 *

To learn more about electromagnetic radiation here
brainly.com/question/10759891
#SPJ4
The particles always move parallel and perpendicular to the waves. The waves which are in the water moves a circle. Both up and down and back and forth.
Good luck :)
Answer:
Yes
Explanation:
Yes, this is a random error generating because of statistical constraint. We only have finite number of data points. As per this, if we plot our observation we will get a gaussian (inverse bell ) shaped curve with mean equal to central value.
Answer:


Explanation:
<u>Horizontal Launch</u>
When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
vx=v
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

The horizontal component of the velocity is always the same:

The vertical component at t=5.5 s is:


States that particles are attracts with every other particle. wich force is directily proportional product of two masses and inversely proportional to the distance between the centers.