780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
The moon would be bright and the earth would be darker because the sun is on the opposite side of the earth at that time and the light from it is reflecting off the moon to produce light upon the nigh also.......
You wouldn’t see the sun a night...
Unless you lived in the north/south pole
Answer:
6.77 minutes
Explanation:
172 degree - 78 degree = (185 degree - 78 degree)e−2 k
=> 94 = 107
e−2 k => 94 ÷ 107
k => ln (94÷107) / 2
147 - 78 = (185 - 78)e ^[ln (94÷107) / 2]
=> 69 = 107 e^ [ln (94÷107) / 2]
e^[ln (94÷107) / 2] =69 ÷ 107
=> t = [ln (69 ÷ 107)] ÷ [ln (94÷107) / 2]
t=> -0.4387 ÷ -0.0648
t => 6.77 minutes.
Therefore, the final answer to the question is 6.77 minutes.
There are only two correct options. Kinetic energy to mechanical energy, and mechanical energy to electrical energy.