You are correct, but you needn't worry about the signs so much. Just remember that the negative sign is used to denote a loss of energy; since the water is hotter, it will be losing energy (-Q) and the iron will gain energy (Q). Now, we substitute the values:
-149.3 * 4.184 * (T - 95) = 412 * 0.44 * (T - 5)
Solving this equation for T,
T = 74.8 °C
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Answer:
I'm thinking cooper but not sure
A logarithmic scale is a nonlinear scale used when there is a large range of quantities