I think D. It starts at (0.0) and goes to the correct points so it makes sense
Answer:
∴ [T]=[WF−1V−1]
Hope this answer is right!!
Answer:
The mass of the block, M =T/(3a +g) Kg
Explanation:
Given,
The upward acceleration of the block a = 3a
The constant force acting on the block, F₀ = Ma = 3Ma
The mass of the block, M = ?
In an Atwood's machine, the upward force of the block is given by the relation
Ma = T - Mg
M x 3a = T - Ma
3Ma + Mg = T
M = T/(3a +g) Kg
Where 'T' is the tension of the string.
Hence, the mass of the block in Atwood's machine is, M = T/(3a +g) Kg
Answer:
0.025 m
0.059166 m
Explanation:
P = Pressure
A = Area
x = Compression of spring
Force is given by

From Hooke's law

The spring is compressed 0.025 m
In the second case


Net force would be

Compression would be

The compression of the spring is 0.059166 m