Answer:
Minimum uncertainty in velocity of a proton,
Explanation:
It is given that,
A proton is confined to a space 1 fm wide, 
We need to find the minimum uncertainty in its velocity. We know that the Heisenberg Uncertainty principle gives the uncertainty between position and the momentum such that,

Since, p = mv





So, the minimum uncertainty in its velocity is greater than
. Hence, this is the required solution.
Explanation:
where is the question
I did not understood this question
That would be a frequency of 1.2666... beats per second. This can be phrased as your heart beats at 1.27 Hz.
Answer:
≅3666.67 N
Explanation:
Use Newton's 2nd law, F = ma where F=force applied, m = mass of the object,
a = acceleration acquired by the object.
a= (v-u)/t where v = final velocity, u = initial velocity and t = time taken
calculate a = (30-0)/9 ≅ 3.33 m/s2
Then F = 1100×a = 3666.67 N
I dont know if insurance can help u sweeid