Answer:
the rotational inertia of the cylinder = 4.85 kgm²
the mass moved 7.942 m/s
Explanation:
Formula for calculating Inertia can be expressed as:
For calculating the rotational inertia of the cylinder ; we have;
I ≅ 4.85 kgm²
mg - T ma and RT = I ∝
T =
a = 4.1713 m/s²
Using the equation of motion
Answer:
a) 567J
b) 283.5J
c)850.5J
Explanation:
The expression for the translational kinetic energy is,
Substitute,
14kg for m
9m/s for v
The translational kinetic energy of the center of mass is 567J
(B)
The expression for the rotational kinetic energy is,
The expression for the moment of inertia of the cylinder is,
The expression for angular velocity is,
substitute
1/2mr² for I
and vr for w
in equation for rotational kinetic energy as follows:
The rotational kinetic energy of the center of mass is 283.5J
(c)
The expression for the total energy is,
substitute 567J for E(r) and 283.5J for E(R)
The total energy of the cylinder is 850.5J
Answer:
the average force exerted by seatbelts on the passenger is 5625 N.
Explanation:
Given;
initial velocity of the car, u = 50 m/s
distance traveled by the car, s = 20 m
final velocity of the after coming to rest, v = 0
mass of the passenger, m = 90 kg
Determine the acceleration of the car as it hit the pile of dirt;
v² = u² + 2as
0 = 50² + (2 x 20)a
0 = 2500 + 40a
40a = -2500
a = -2500/40
a = -62.5 m/s²
The deceleration of the car is 62.5 m/s²
The force exerted on the passenger by the backward action of the car is calculated as follows;
F = ma
F = 90 x 62.5
F = 5625 N
Therefore, the average force exerted by seatbelts on the passenger is 5625 N.