Answer:
hi what is your question?? say in English please
Answer:
Explanation:

from steam tables , at 250 kPa, and at
T₁ = 80⁰C ⇒ h₁ = 335.02 kJ/kg
T₂ = 20⁰C⇒ h₂ = 83.915 kJ/kg
T₃ = 42⁰C ⇒ h₃ = 175.90 kJ/kg
we know


according to energy balance equation


Answer:
c. about 1/10 as great.
Explanation:
While jumping form a certain height when we bend our knees upon reaching the ground such that the time taken to come to complete rest is increased by 10 times then the impact force gets reduced to one-tenth of the initial value when we would not do so.
This is in accordance with the Newton's second law of motion which states that the rate of change in velocity is directly proportional to the force applied on the body.
Mathematically:


since mass is constant

when 
then,


the body will experience the tenth part of the maximum force.
where:
represents the rate of change in dependent quantity with respect to time
momentum
mass of the person jumping
velocity of the body while hitting the ground.
Magnitude of acceleration = (change in speed) / (time for the change).
Change in speed = (27 - 0) = 27 m/s
Time for the change = 10 s
Magnitude of acceleration = (27 m/s) / (10 s) = 2.7 m/s² .
The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4